Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
20 result(s) for "Jego Gaetan"
Sort by:
First-in-class inhibitor of HSP110 blocks BCR activation through SYK phosphorylation in diffuse large B-cell lymphoma
Activated B-cell-like diffuse large B-cell lymphoma (ABC-DLBCL) is driven by aberrant activation of the B-cell receptor (BCR) and the TLR/MyD88 signaling pathways. The heat-shock protein HSP110 is a candidate for their regulation as it stabilizes MyD88. However, its role in overall BCR signaling remains unknown. Here, we used first-in-class HSP110 inhibitors to address this question. HSP110 inhibitors decreased the survival of several ABC-DLBCL cell lines in vitro and in vivo, and reduced the phosphorylation of BCR signaling kinases, including BTK and SYK. We identified an interaction between HSP110 and SYK and demonstrated that HSP110 promotes SYK phosphorylation. Finally, the combination of the HSP110 inhibitor with the PI3K inhibitor copanlisib decreases SYK/BTK and AKT phosphorylation synergistically, leading to suppression of tumor growth in cell line xenografts and strong reduction in patient-derived xenografts. In conclusion, by regulating the BCR/TLR signaling pathway, HSP110 inhibitors are potential drug candidates for ABC-DLBCL patients.
A first-in-class inhibitor of HSP110 to potentiate XPO1-targeted therapy in primary mediastinal B-cell lymphoma and classical Hodgkin lymphoma
Background Primary mediastinal B-cell lymphoma (PMBL) and classical Hodgkin lymphoma (cHL) are distinct hematological malignancies of B-cell origin that share many biological, molecular, and clinical characteristics. In particular, the JAK/STAT signaling pathway is a driver of tumor development due to multiple recurrent mutations, particularly in STAT6. Furthermore, the XPO1 gene that encodes exportin 1 (XPO1) shows a frequent point mutation (E571K) resulting in an altered export of hundreds of cargo proteins, which may impact the success of future therapies in PMBL and cHL. Therefore, targeted therapies have been envisioned for these signaling pathways and mutations. Methods To identify novel molecular targets that could overcome the treatment resistance that occurs in PMBL and cHL patients, we have explored the efficacy of a first-in-class HSP110 inhibitor (iHSP110-33) alone and in combination with selinexor, a XPO1 specific inhibitor, both in vitro and in vivo. Results We show that iHSP110-33 decreased the survival of several PMBL and cHL cell lines and the size of tumor xenografts. We demonstrate that HSP110 is a cargo of XPO1 wt as well as of XPO1 E571K . Using immunoprecipitation, proximity ligation, thermophoresis and kinase assays, we showed that HSP110 directly interacts with STAT6 and favors its phosphorylation. The combination of iHSP110-33 and selinexor induces a synergistic reduction of STAT6 phosphorylation and of lymphoma cell growth in vitro and in vivo. In biopsies from PMBL patients, we show a correlation between HSP110 and STAT6 phosphorylation levels. Conclusions These findings suggest that HSP110 could be proposed as a novel target in PMBL and cHL therapy.
The biofilm mode of life boosts the anti‐inflammatory properties of Lactobacillus
Summary The predominant form of life for microorganisms in their natural habitats is the biofilm mode of growth. The adherence and colonization of probiotic bacteria are considered as essential factors for their immunoregulatory function in the host. Here, we show that Lactobacillus casei ATCC334 adheres to and colonizes the gut of zebrafish larvae. The abundance of pro‐inflammatory cytokines and the recruitment of macrophages were low when inflammation was induced in probiotic‐fed animals, suggesting that these bacteria have anti‐inflammatory properties. We treated human macrophage‐differentiated monocytic THP‐1 cells with supernatants of L. casei ATCC334 grown in either biofilm or planktonic cultures. TNF‐α production was suppressed and the NF‐κB pathway was inhibited only in the presence of supernatants from biofilms. We identified GroEL as the biofilm supernatant compound responsible, at least partially, for this anti‐inflammatory effect. Gradual immunodepletion of GroEL demonstrated that the abundance of GroEL and TNF‐α were inversely correlated. We confirmed that biofilm development in other Lactobacillus species affects the immune response. The biofilms supernatants of these species also contained large amounts of GroEL. Thus, our results demonstrate that the biofilm enhances the immunomodulatory effects of Lactobacillus sp. and that secreted GroEL is involved in this beneficial effect.
Chaperoning STAT3/5 by Heat Shock Proteins: Interest of Their Targeting in Cancer Therapy
While cells from multicellular organisms are dependent upon exogenous signals for their survival, growth, and proliferation, commitment to a specific cell fate requires the correct folding and maturation of proteins, as well as the degradation of misfolded or aggregated proteins within the cell. This general control of protein quality involves the expression and the activity of molecular chaperones such as heat shock proteins (HSPs). HSPs, through their interaction with the STAT3/STAT5 transcription factor pathway, can be crucial both for the tumorigenic properties of cancer cells (cell proliferation, survival) and for the microenvironmental immune cell compartment (differentiation, activation, cytokine secretion) that contributes to immunosuppression, which, in turn, potentially promotes tumor progression. Understanding the contribution of chaperones such as HSP27, HSP70, HSP90, and HSP110 to the STAT3/5 signaling pathway has raised the possibility of targeting such HSPs to specifically restrain STAT3/5 oncogenic functions. In this review, we present how HSPs control STAT3 and STAT5 activation, and vice versa, how the STAT signaling pathways modulate HSP expression. We also discuss whether targeting HSPs is a valid therapeutic option and which HSP would be the best candidate for such a strategy.
Heat-Shock Proteins in Leukemia and Lymphoma: Multitargets for Innovative Therapeutic Approaches
Heat-shock proteins (HSPs) are powerful chaperones that provide support for cellular functions under stress conditions but also for the homeostasis of basic cellular machinery. All cancer cells strongly rely on HSPs, as they must continuously adapt to internal but also microenvironmental stresses to survive. In solid tumors, HSPs have been described as helping to correct the folding of misfolded proteins, sustain oncogenic pathways, and prevent apoptosis. Leukemias and lymphomas also overexpress HSPs, which are frequently associated with resistance to therapy. HSPs have therefore been proposed as new therapeutic targets. Given the specific biology of hematological malignancies, it is essential to revise their role in this field, providing a more adaptable and comprehensive picture that would help design future clinical trials. To that end, this review will describe the different pathways and functions regulated by HSP27, HSP70, HSP90, and, not least, HSP110 in leukemias and lymphomas.
Serpin B1 defect and increased apoptosis of neutrophils in Cohen syndrome neutropenia
Cohen syndrome (CS) is a rare genetic disorder due to mutations in VPS13B gene. Among various clinical and biological features, CS patients suffer from inconsistent neutropenia, which is associated with recurrent but minor infections. We demonstrate here that this neutropenia results from an exaggerate rate of neutrophil apoptosis. Besides this increased cell death, which occurs in the absence of any endoplasmic reticulum stress or defect in neutrophil elastase (ELANE) expression or localization, all neutrophil functions appeared to be normal. We showed a disorganization of the Golgi apparatus in CS neutrophils precursors, that correlates with an altered glycosylation of ICAM-1 in these cells, as evidenced by a migration shift of the protein. Furthermore, a striking decrease in the expression of SERPINB1 gene, which encodes a critical component of neutrophil survival, was detected in CS neutrophils. These abnormalities may account for the excessive apoptosis of neutrophils leading to neutropenia in CS.Key messagesCohen syndrome patients’ neutrophils display normal morphology and functions.Cohen syndrome patients’ neutrophils have an increased rate of spontaneous apoptosis compared to healthy donors’ neutrophils.No ER stress or defective ELA2 expression or glycosylation was observed in Cohen syndrome patients’ neutrophils.SerpinB1 expression is significantly decreased in Cohen syndrome neutrophils as well as in VPS13B-deficient cells.
Heat Shock Proteins and PD-1/PD-L1 as Potential Therapeutic Targets in Myeloproliferative Neoplasms
Myeloproliferative neoplasms (MPN) are a group of clonal disorders that affect hematopoietic stem/progenitor cells. These disorders are often caused by oncogenic driver mutations associated with persistent Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling. While JAK inhibitors, such as ruxolitinib, reduce MPN-related symptoms in myelofibrosis, they do not influence the underlying cause of the disease and are not curative. Due to these limitations, there is a need for alternative therapeutic strategies and targets. Heat shock proteins (HSPs) are cytoprotective stress-response chaperones involved in protein homeostasis and in many critical pathways, including inflammation. Over the last decade, several research teams have unraveled the mechanistic connection between STAT signaling and several HSPs, showing that HSPs are potential therapeutic targets for MPN. These HSPs include HSP70, HSP90 (chaperoning JAK2) and both HSP110 and HSP27, which are key factors modulating STAT3 phosphorylation status. Like the HSPs, the PD-1/PD-L1 signaling pathway has been widely studied in cancer, but the importance of PD-L1-mediated immune escape in MPN was only recently reported. In this review, we summarize the role of HSPs and PD-1/PD-L1 signaling, the modalities of their experimental blockade, and the effect in MPN. Finally, we discuss the potential of these emerging targeted approaches in MPN therapy.
XPO1E571K Mutation Modifies Exportin 1 Localisation and Interactome in B-Cell Lymphoma
The XPO1 gene encodes exportin 1 (XPO1) that controls the nuclear export of cargo proteins and RNAs. Almost 25% of primary mediastinal B-cell lymphoma (PMBL) and classical Hodgkin lymphoma (cHL) cases harboured a recurrent XPO1 point mutation (NM_003400, chr2:g61718472C>T) resulting in the E571K substitution within the hydrophobic groove of the protein, the site of cargo binding. We investigated the impact of the XPO1E571K mutation using PMBL/cHL cells having various XPO1 statuses and CRISPR–Cas9-edited cells in which the E571K mutation was either introduced or knocked-out. We first confirmed that the mutation was present in both XPO1 mRNA and protein. We observed that the mutation did not modify the export capacity but rather the subcellular localisation of XPO1 itself. In particular, mutant XPO1 bound to importin β1 modified the nuclear export/import dynamics of relevant cargoes.
Expression of a mutant HSP110 sensitizes colorectal cancer cells to chemotherapy and improves disease prognosis
Microsatellite instability (MSI) due to alterations in DNA repair genes leads to carcinogenesis, but it also correlates with better prognosis and therapy response. Little is known of the contribution of altered noncoding sequences to MSI tumorigenesis. This report identifies a deletion in an MSI intronic region leading to the expression of a truncated chaperone, which shows dominant-negative effects on its wild-type counterpart. Acting as an endogenous inhibitor of a protumorigenic chaperone, the expression of the truncated variant associates with better prognosis in humans and may contribute to the overall limited malignancy of MSI tumors. Heat shock proteins (HSPs) are necessary for cancer cell survival. We identified a mutant of HSP110 (HSP110ΔE9) in colorectal cancer showing microsatellite instability (MSI CRC), generated from an aberrantly spliced mRNA and lacking the HSP110 substrate-binding domain. This mutant was expressed at variable levels in almost all MSI CRC cell lines and primary tumors tested. HSP110ΔE9 impaired both the normal cellular localization of HSP110 and its interaction with other HSPs, thus abrogating the chaperone activity and antiapoptotic function of HSP110 in a dominant-negative manner. HSP110ΔE9 overexpression caused the sensitization of cells to anticancer agents such as oxaliplatin and 5-fluorouracil, which are routinely prescribed in the adjuvant treatment of people with CRC. The survival and response to chemotherapy of subjects with MSI CRCs was associated with the tumor expression level of HSP110ΔE9. HSP110 may thus constitute a major determinant for both prognosis and treatment response in CRC.
Pathogen-associated molecular patterns are growth and survival factors for human myeloma cells through Toll-like receptors
Multiple myeloma (MM) patients are strongly vulnerable to infections, which remain a major cause of death. During infection, human immune cells sense the presence of invading pathogens through the Toll-like receptor family (TLR), which recognizes pathogen-associated molecular patterns (PAMP). We hypothesized that MM cells also could sense the presence of microorganisms, thus promoting myeloma disease progression. Here, we report that human myeloma cell lines (HMCL) and primary myeloma cells express a broad range of TLR, and are sensitive to the corresponding PAMP. Toll-like receptor 1, 7 and 9 are most frequently expressed by HMCL. The expression pattern of TLR does not correlate with the one of B cells, as TLR2 and 10 are lost while TLR3, 4 and 8 are acquired by some HMCL. Culture with TLR7- and TLR9-ligands saves HMCL from serum-deprivation or dexamethasone-induced apoptosis. Similarly, both ligands increase myeloma cell growth. These effects are mediated by an autocrine secretion of interleukin-6 (IL-6) since the neutralization of IL-6 blocks the growth and survival of HMCL. Thus, TLR expression and function are not restricted to the cells of the immune system and could be of advantage for cancer cells. In MM, recurrent infections could promote tumor growth and favor escape from standard therapies.