Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
78 result(s) for "Jenkin, Graham"
Sort by:
Autologous transplantation of umbilical cord blood-derived cells in extreme preterm infants: protocol for a safety and feasibility study
IntroductionPreterm brain injury continues to be an important complication of preterm birth, especially in extremely premature infants. Umbilical cord blood-derived cells (UCBCs) are increasingly being evaluated for their neuroprotective and neuroreparative properties in preclinical and clinical studies. There remains a paucity of information on the feasibility and safety of autologous UCBC transplantation in extremely premature infants.Methods and analysisA single centre safety and feasibility study in preterm babies born before 28 weeks gestation. Cord blood will be collected after birth and if sufficient blood is obtained, UCB mononuclear cells will be harvested from the cord blood, characterised and stored. After excluding infants who have already suffered severe preterm brain injury, based on cranial ultrasounds in first week of life, preterm infants will be infused with autologous UCBCs via the intravenous route at a dose of 25–50 million UCBCs/kg body weight of live cells, with the cell number being the maximum available up to 50 million cells/kg. A minimum of 20 infants will be administered autologous UCBCs. Primary outcomes will include feasibility and safety. Feasibility will be determined by access to sufficient cord blood at collection and UCBCs following processing. Safety will be determined by lack of adverse events directly related to autologous UCBC administration in the first few days after cell administration. Secondary outcomes studied will include neonatal and neurodevelopmental morbidities till 2 years of life. Additional outcomes will include cell characteristics of all collected cord blood, and cytokine responses to cell administration in transplanted infants till 36 weeks’ corrected age.Ethics and disseminationMonash Health Human Research Ethics Committee approved this study in December 2019. Recruitment is to commence in July 2020 and is expected to take around 12 months. The findings of this study will be disseminated via peer-reviewed journals and at conferences.Trial registration numberACTRN12619001637134.
CAR-T cell development for Cutaneous T cell Lymphoma: current limitations and potential treatment strategies
Chimeric antigen receptor (CAR)-T therapy has demonstrated remarkable outcomes for B cell malignancies, however, its application for T cell lymphoma, particularly cutaneous T cell lymphoma (CTCL), has been limited. Barriers to effective CAR-T cell therapy in treating CTCL include T cell aplasia in autologous transplants, CAR-T product contamination with leukemic T cells, CAR-T fratricide (when the target antigen is present on normal T cells), and tumor heterogeneity. To address these critical challenges, innovative CAR engineering by targeting multiple antigens to strike a balance between efficacy and safety of the therapy is necessary. In this review, we discuss the current obstacles to CAR-T cell therapy and highlight potential targets in treating CTCL. Looking forward, we propose strategies to develop more powerful dual CARs that are advancing towards the clinic in CTCL therapy.
Umbilical cord blood derived cell expansion: a potential neuroprotective therapy
Umbilical cord blood (UCB) is a rich source of beneficial stem and progenitor cells with known angiogenic, neuroregenerative and immune-modulatory properties. Preclinical studies have highlighted the benefit of UCB for a broad range of conditions including haematological conditions, metabolic disorders and neurological conditions, however clinical translation of UCB therapies is lacking. One barrier for clinical translation is inadequate cell numbers in some samples meaning that often a therapeutic dose cannot be achieved. This is particularly important when treating adults or when administering repeat doses of cells. To overcome this, UCB cell expansion is being explored to increase cell numbers. The current focus of UCB cell expansion is CD34+ haematopoietic stem cells (HSCs) for which the main application is treatment of haematological conditions. Currently there are 36 registered clinical trials that are examining the efficacy of expanded UCB cells with 31 of these being for haematological malignancies. Early data from these trials suggest that expanded UCB cells are a safe and feasible treatment option and show greater engraftment potential than unexpanded UCB. Outside of the haematology research space, expanded UCB has been trialled as a therapy in only two preclinical studies, one for spinal cord injury and one for hind limb ischemia. Proteomic analysis of expanded UCB cells in these studies showed that the cells were neuroprotective, anti-inflammatory and angiogenic. These findings are also supported by in vitro studies where expanded UCB CD34+ cells showed increased gene expression of neurotrophic and angiogenic factors compared to unexpanded CD34+ cells. Preclinical evidence demonstrates that unexpanded CD34+ cells are a promising therapy for neurological conditions where they have been shown to improve multiple indices of injury in rodent models of stroke, Parkinson’s disease and neonatal hypoxic ischemic brain injury. This review will highlight the current application of expanded UCB derived HSCs in transplant medicine, and also explore the potential use of expanded HSCs as a therapy for neurological conditions. It is proposed that expanded UCB derived CD34+ cells are an appropriate cellular therapy for a range of neurological conditions in children and adults.
Effects of umbilical cord blood cells, and subtypes, to reduce neuroinflammation following perinatal hypoxic-ischemic brain injury
Background It is well understood that hypoxic-ischemic (HI) brain injury during the highly vulnerable perinatal period can lead to cerebral palsy, the most prevalent cause of chronic disability in children. Recently, human clinical trials have reported safety and some efficacy following treatment of cerebral palsy using umbilical cord blood (UCB) cells. UCB is made up of many different cell types, including endothelial progenitor cells (EPCs), T regulatory cells (Tregs), and monocyte-derived suppressor cells (MDSCs). How each cell type contributes individually towards reducing neuroinflammation and/or repairing brain injury is not known. In this study, we examined whether human (h) UCB, or specific UCB cell types, could reduce peripheral and cerebral inflammation, and promote brain repair, when given early after perinatal HI brain injury. Methods HI brain injury was induced in postnatal day (PND) 7 rat pups and cells were administered intraperitoneally on PND 8. Behavioral testing was performed 7 days post injury, and then, brains and spleens were collected for analysis. Results We found in vitro that all UCB cell types, except for EPCs, were immunomodulatory. Perinatal HI brain injury induced significant infiltration of CD4+ T cells into the injured cerebral hemisphere, and this was significantly reduced by all hUCB cell types tested. Compared to HI, UCB, Tregs, and EPCs were able to reduce motor deficits, reduce CD4+ T cell infiltration into the brain, and reduce microglial activation. In addition to the beneficial effects of UCB, EPCs also significantly reduced cortical cell death, returned CD4+ T cell infiltration to sham levels, and reduced the peripheral Th1-mediated pro-inflammatory shift. Conclusion This study highlights that cells found in UCB is able to mediate neuroinflammation and is an effective neuroprotective therapy. Our study also shows that particular cells found in UCB, namely EPCs, may have an added advantage over using UCB alone. This work has the potential to progress towards tailored UCB therapies for the treatment of perinatal brain injury.
Human Amnion Epithelial Cell Transplantation Abrogates Lung Fibrosis and Augments Repair
Chronic lung disease characterized by loss of lung tissue, inflammation, and fibrosis represents a major global health burden. Cellular therapies that could restore pneumocytes and reduce inflammation and fibrosis would be a major advance in management. To determine whether human amnion epithelial cells (hAECs), isolated from term placenta and having stem cell-like and antiinflammatory properties, could adopt an alveolar epithelial phenotype and repair a murine model of bleomycin-induced lung injury. Primary hAECs were cultured in small airway growth medium to determine whether the cells could adopt an alveolar epithelial phenotype. Undifferentiated primary hAECs were also injected parenterally into SCID mice after bleomycin-induced lung injury and analyzed for production of surfactant protein (SP)-A, SP-B, SP-C, and SP-D. Mouse lungs were also analyzed for inflammation and collagen deposition. hAECs grown in small airway growth medium developed an alveolar epithelial phenotype with lamellar body formation, production of SPs A-D, and SP-D secretion. Although hAECs injected into mice lacked SPs, hAECs recovered from mouse lungs 2 weeks post-transplantation produced SPs. hAECs remained engrafted over the 4-week test period. hAEC administration reduced inflammation in association with decreased monocyte chemoattractant protein-1, tumor necrosis factor-alpha, IL-1 and -6, and profibrotic transforming growth factor-beta in mouse lungs. In addition, lung collagen content was significantly reduced by hAEC treatment as a possible consequence of increased degradation by matrix metalloproteinase-2 and down-regulation of the tissue inhibitors of matrix metalloproteinase-1 and 2. hAECs offer promise as a cellular therapy for alveolar restitution and to reduce lung inflammation and fibrosis.
Umbilical Cord Blood-Derived Cell Therapy for Perinatal Brain Injury: A Systematic Review & Meta-Analysis of Preclinical Studies
Perinatal brain injury is a major contributor to long-term adverse neurodevelopment. There is mounting preclinical evidence for use of umbilical cord blood (UCB)-derived cell therapy as potential treatment. To systematically review and analyse effects of UCB-derived cell therapy on brain outcomes in preclinical models of perinatal brain injury. MEDLINE and Embase databases were searched for relevant studies. Brain injury outcomes were extracted for meta-analysis to calculate standard mean difference (SMD) with 95% confidence interval (CI), using an inverse variance, random effects model. Outcomes were separated based on grey matter (GM) and white matter (WM) regions where applicable. Risk of bias was assessed using SYRCLE, and GRADE was used to summarise certainty of evidence. Fifty-five eligible studies were included (7 large, 48 small animal models). UCB-derived cell therapy significantly improved outcomes across multiple domains, including decreased infarct size (SMD 0.53; 95% CI (0.32, 0.74), p < 0.00001), apoptosis (WM, SMD 1.59; 95%CI (0.86, 2.32), p < 0.0001), astrogliosis (GM, SMD 0.56; 95% CI (0.12, 1.01), p = 0.01), microglial activation (WM, SMD 1.03; 95% CI (0.40, 1.66), p = 0.001), neuroinflammation (TNF-α, SMD 0.84; 95%CI (0.44, 1.25), p < 0.0001); as well as improved neuron number (SMD 0.86; 95% CI (0.39, 1.33), p = 0.0003), oligodendrocyte number (GM, SMD 3.35; 95 %CI (1.00, 5.69), p = 0.005) and motor function (cylinder test, SMD 0.49; 95 %CI (0.23, 0.76), p = 0.0003). Risk of bias was determined as serious, and overall certainty of evidence was low. UCB-derived cell therapy is an efficacious treatment in pre-clinical models of perinatal brain injury, however findings are limited by low certainty of evidence.
The Beneficial Effects of Melatonin Administration Following Hypoxia-Ischemia in Preterm Fetal Sheep
Melatonin (MLT) is an endogenous hormone that controls circadian cycle. MLT has additional important properties that make it appealing as a neuroprotective agent-it is a potent anti-oxidant, with anti-apoptotic and anti-inflammatory properties. MLT is safe for administration during pregnancy or to the newborn after birth, and can reduce white matter brain injury under conditions of chronic fetal hypoxia. Accordingly, in the current study, we examined whether an intermediate dose of MLT could restore white matter brain development when administered an acute hypoxic ischemic (HI) insult in preterm fetal sheep. Fifteen fetal sheep at 95-98 days gestation were instrumented with femoral artery and vein catheters, and a silastic cuff placed around the umbilical cord. At 102 days gestation, the cuff was inflated, causing complete umbilical cord occlusion for 25 min in 10 fetuses, to induce acute severe HI. Five HI fetuses received intravenous MLT for 24 h beginning at 2 h after HI. The remaining five fetuses were administered saline alone. Ten days after HI, the fetal brain was collected from each animal and white and gray matter neuropathology assessed. HI caused a significant increase in apoptotic cell death (TUNEL+), activated microglia (Iba-1+), and oxidative stress (8-OHdG+) within the subventricular and subcortical white matter. HI reduced the total number of oligodendrocytes and CNPase+ myelin density. MLT administration following HI decreased apoptosis, inflammation and oxidative stress within the white matter. MLT had intermediate benefits for the developing white matter: it increased oligodendrocyte cell number within the periventricular white matter only, and improved CNPase+ myelin density within the subcortical but not the striatal white matter. MLT administration following HI was also associated with improved neuronal survival within the cortex. Neuropathology in preterm infants is complex and mediated by multiple mechanisms, including inflammation, oxidative stress and apoptotic pathways. Treatment with MLT presents a safe approach to neuroprotective therapy in preterm infants but appears to have brain region-specific benefits within the white matter.
Cell-Based Therapies Used to Treat Lumbar Degenerative Disc Disease: A Systematic Review of Animal Studies and Human Clinical Trials
Low back pain and degenerative disc disease are a significant cause of pain and disability worldwide. Advances in regenerative medicine and cell-based therapies, particularly the transplantation of mesenchymal stem cells and intervertebral disc chondrocytes, have led to the publication of numerous studies and clinical trials utilising these biological therapies to treat degenerative spinal conditions, often reporting favourable outcomes. Stem cell mediated disc regeneration may bridge the gap between the two current alternatives for patients with low back pain, often inadequate pain management at one end and invasive surgery at the other. Through cartilage formation and disc regeneration or via modification of pain pathways stem cells are well suited to enhance spinal surgery practice. This paper will systematically review the current status of basic science studies, preclinical and clinical trials utilising cell-based therapies to repair the degenerate intervertebral disc. The mechanism of action of transplanted cells, as well as the limitations of published studies, will be discussed.
Stem cell therapy to protect and repair the developing brain: a review of mechanisms of action of cord blood and amnion epithelial derived cells
In the research, clinical, and wider community there is great interest in the use of stem cells to reduce the progression, or indeed repair brain injury. Perinatal brain injury may result from acute or chronic insults sustained during fetal development, during the process of birth, or in the newborn period. The most readily identifiable outcome of perinatal brain injury is cerebral palsy, however, this is just one consequence in a spectrum of mild to severe neurological deficits. As we review, there are now clinical trials taking place worldwide targeting cerebral palsy with stem cell therapies. It will likely be many years before strong evidence-based results emerge from these trials. With such trials underway, it is both appropriate and timely to address the physiological basis for the efficacy of stem-like cells in preventing damage to, or regenerating, the newborn brain. Appropriate experimental animal models are best placed to deliver this information. Cell availability, the potential for immunological rejection, ethical, and logistical considerations, together with the propensity for native cells to form teratomas, make it unlikely that embryonic or fetal stem cells will be practical. Fortunately, these issues do not pertain to the use of human amnion epithelial cells (hAECs), or umbilical cord blood (UCB) stem cells that are readily and economically obtained from the placenta and umbilical cord discarded at birth. These cells have the potential for transplantation to the newborn where brain injury is diagnosed or even suspected. We will explore the novel characteristics of hAECs and undifferentiated UCB cells, as well as UCB-derived endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs), and how immunomodulation and anti-inflammatory properties are principal mechanisms of action that are common to these cells, and which in turn may ameliorate the cerebral hypoxia and inflammation that are final pathways in the pathogenesis of perinatal brain injury.
Perinatal Brain Injury As a Consequence of Preterm Birth and Intrauterine Inflammation: Designing Targeted Stem Cell Therapies
Chorioamnionitis is a major cause of preterm birth and brain injury. Bacterial invasion of the chorion and amnion, and/or the placenta, can lead to a fetal inflammatory response, which in turn has significant adverse consequences for the developing fetal brain. Accordingly, there is a strong causal link between chorioamnionitis, preterm brain injury and the pathogenesis of severe postnatal neurological deficits and cerebral palsy. Currently there are no treatments to protect or repair against brain injury in preterm infants born after pregnancy compromised by intrauterine infection. This review describes the injurious cascade of events in the preterm brain in response to a severe fetal inflammatory event. We will highlight specific periods of increased vulnerability, and the potential effects of therapeutic intervention with cell-based therapies. Many clinical trials are underway to investigate the efficacy of stem cells to treat patients with cerebral palsy. Stem cells, obtained from umbilical cord tissue and cord blood, normally discarded after birth, are emerging as a safe and potentially effective therapy. It is not yet known, however, which stem cell type(s) are the most efficacious for administration to preterm infants to treat brain injury-mediated inflammation. Individual stem cell populations found in cord blood and tissue, such as mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs), have a number of potential benefits that may specifically target preterm inflammatory-induced brain injury. MSCs have strong immunomodulatory potential, protecting against global and local neuroinflammatory cascades triggered during infection to the fetus. EPCs have angiogenic and vascular reparative qualities that make them ideal for neurovascular repair. A combined therapy using both MSCs and EPCs to target inflammation and promote angiogenesis for re-establishment of vital vessel networks is a treatment concept that warrants further investigation.