Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
66 result(s) for "Jenkinson, Helen"
Sort by:
Long term cause specific mortality among 34489 five year survivors of childhood cancer in Great Britain: population based cohort study
Objective To determine whether modern treatments for cancer are associated with a net increased or decreased risk of death from neoplastic and non-neoplastic causes among survivors of childhood cancer. Design Population based cohort study. Setting British Childhood Cancer Survivor Study. Participants Nationwide population based cohort of 34 489 five year survivors of childhood cancer with a diagnosis from 1940 to 2006 and followed up until 28 February 2014. Main outcome measures Cause specific standardised mortality ratios and absolute excess risks are reported. Multivariable Poisson regression models were utilised to evaluate the simultaneous effect of risk factors. Likelihood ratio tests were used to test for heterogeneity or trend. Results Overall, 4475 deaths were observed, which was 9.1 (95% confidence interval 8.9 to 9.4) times that expected in the general population, corresponding to 64.2 (95% confidence interval 62.1 to 66.3) excess deaths per 10 000 person years. The number of excess deaths from all causes declined among those treated more recently; those treated during 1990-2006 experienced 30% of the excess number of deaths experienced by those treated before 1970. The corresponding percentages for the decline in excess deaths from recurrence or progression and non-neoplastic causes were 30% and 60%, respectively. Among survivors aged 50-59 years, 41% and 22% of excess deaths were attributable to subsequent primary neoplasms and circulatory conditions, respectively, whereas the corresponding percentages among those aged 60 years or more were 31% and 37%. Conclusions The net effects of changes in cancer treatments, and surveillance and management for late effects, over the period 1940 to 2006 was to reduce the excess number of deaths from both recurrence or progression and non-neoplastic causes among those treated more recently. Among survivors aged 60 years or more, the excess number of deaths from circulatory causes exceeds the excess number of deaths from subsequent primary neoplasms. The important message for the evidence based surveillance aimed at preventing excess mortality and morbidity in survivors aged 60 years or more is that circulatory disease overtakes subsequent primary neoplasms as the leading cause of excess mortality.
Long term cause specific mortality among 34 489 five year survivors of childhood cancer in Great Britain: population based cohort study
Objective To determine whether modern treatments for cancer are associated with a net increased or decreased risk of death from neoplastic and non-neoplastic causes among survivors of childhood cancer.Design Population based cohort study.Setting British Childhood Cancer Survivor Study.Participants Nationwide population based cohort of 34 489 five year survivors of childhood cancer with a diagnosis from 1940 to 2006 and followed up until 28 February 2014.Main outcome measures Cause specific standardised mortality ratios and absolute excess risks are reported. Multivariable Poisson regression models were utilised to evaluate the simultaneous effect of risk factors. Likelihood ratio tests were used to test for heterogeneity or trend.Results Overall, 4475 deaths were observed, which was 9.1 (95% confidence interval 8.9 to 9.4) times that expected in the general population, corresponding to 64.2 (95% confidence interval 62.1 to 66.3) excess deaths per 10 000 person years. The number of excess deaths from all causes declined among those treated more recently; those treated during 1990-2006 experienced 30% of the excess number of deaths experienced by those treated before 1970. The corresponding percentages for the decline in excess deaths from recurrence or progression and non-neoplastic causes were 30% and 60%, respectively. Among survivors aged 50-59 years, 41% and 22% of excess deaths were attributable to subsequent primary neoplasms and circulatory conditions, respectively, whereas the corresponding percentages among those aged 60 years or more were 31% and 37%.Conclusions The net effects of changes in cancer treatments, and surveillance and management for late effects, over the period 1940 to 2006 was to reduce the excess number of deaths from both recurrence or progression and non-neoplastic causes among those treated more recently. Among survivors aged 60 years or more, the excess number of deaths from circulatory causes exceeds the excess number of deaths from subsequent primary neoplasms. The important message for the evidence based surveillance aimed at preventing excess mortality and morbidity in survivors aged 60 years or more is that circulatory disease overtakes subsequent primary neoplasms as the leading cause of excess mortality.
The Impact of Cell-Free DNA Analysis on the Management of Retinoblastoma
Retinoblastoma is a childhood eye cancer, mainly caused by mutations in the RB1 gene, which can be somatic or constitutional. Unlike many other cancers, tumour biopsies are not performed due to the risk of tumour dissemination. As a result, until recently, somatic genetic analysis was only possible if an affected eye was removed as part of a treatment. Several recent proof of principle studies have demonstrated that the analysis of tumour-derived cell-free DNA, either obtained from ocular fluid or blood plasma, has the potential to advance the diagnosis and influence the prognosis of retinoblastoma patients. It has been shown that a confirmed diagnosis is possible in retinoblastoma patients undergoing conservative treatment. In vivo genetic analysis of retinoblastoma tumours is also now possible, allowing the potential identification of secondary genetic events as prognostic biomarkers. In addition, noninvasive prenatal diagnosis in children at risk of inheriting retinoblastoma has been developed. Here, we review the current literature and discuss the potential impact of cell-free DNA analysis on both the diagnosis and treatment of retinoblastoma patients and their families.
Non-invasive diagnosis of retinoblastoma using cell-free DNA from aqueous humour
Retinoblastoma is the most common eye malignancy in childhood caused by mutations in the RB1 gene. Both alleles of the RB1 gene must be mutated for tumour development. The initial RB1 mutation may be constitutional germline or somatic (originating in one retinal cell only). Distinguishing between these alternative mechanisms is crucial, with wider implications for management of the patient and family members. Bilateral retinoblastoma is nearly always due to a constitutional mutation; however, approximately 15% of unilateral cases also carry a germline mutation, and identifying these cases is important. This can be achieved by identifying both mutation types in tumour tissue and excluding their presence in blood. Modern eye-saving chemotherapy treatment (systemic, intra-arterial and intravitreal) has resulted in fewer enucleations. As a result, tumour tissue required to identify sporadic RB1 mutation(s) is not always available. Modern intravitreal chemotherapeutic techniques for retinoblastoma involve aspiration of aqueous humour (AH), providing a novel sample source for analysis. By analysing cell-free DNA present in the AH fluid of eyes affected with retinoblastoma, we have developed a screening test capable of detecting somatic RB1 mutations that is comparable to current tests on enucleated tumour tissue. The results obtained with fluid from enucleated eyes were concordant with tumour tissue in all 10 cases analysed. In addition, AH analysis from two patients undergoing intravitreal chemotherapy successfully identified somatic variants in both cases. Our findings suggest that AH fluid is a promising source of tumour-derived DNA in retinoblastoma for analysis.
Utility of carboplatin therapeutic drug monitoring for the treatment of neonate and infant retinoblastoma patients in the United Kingdom
Background Retinoblastoma is the most common intra-ocular malignancy in children and frequently presents in very young patients who commonly require intravenous carboplatin. Delivering this is challenging due to a lack of uniform dosing recommendations, rapid changes in physiological function and the risk of side-effects. Methods We conducted a retrospective review of neonates and infants in the UK with retinoblastoma, who have undergone carboplatin therapeutic drug monitoring (TDM). We report on the pharmacokinetic, treatment efficacy and toxicity data. Results In total, 29 patients (median age 5 weeks at treatment onset) underwent a total of 74 TDM guided cycles of chemotherapy, involving real time sampling and dose adjustment. An additional 13 patients underwent TDM sampling to modify doses between cycles. Without the adoption of TDM guided dosing, carboplatin exposures would have been ≥20% outside the target AUC in 38/78 (49%) of treatment cycles. Excellent responses and a reassuringly low incidence of toxicities were observed following dose adjustment, despite the young patient age and the implementation of dose increases in the majority of cases. Conclusions Real time TDM is safe, effective and deliverable for neonates and infants receiving carboplatin for retinoblastoma and should be considered standard of care up to the age of 6 months.
DICER1 syndrome: clarifying the diagnosis, clinical features and management implications of a pleiotropic tumour predisposition syndrome
BackgroundConstitutional DICER1 mutations were recently reported to cause familial pleuropulmonary blastoma (PPB).AimTo investigate the contribution and phenotypic spectrum of constitutional and somatic DICER1 mutations to cancer.Methods and resultsThe authors sequenced DICER1 in constitutional DNA from 823 unrelated patients with a variety of tumours and in 781 cancer cell lines. Constitutional DICER1 mutations were identified in 19 families including 11/14 with PPB, 2/3 with cystic nephroma, 4/7 with ovarian Sertoli–Leydig-type tumours, 1/243 with Wilms tumour (this patient also had a Sertoli–Leydig tumour), 1/1 with intraocular medulloepithelioma (this patient also had PPB), 1/86 with medulloblastoma/infratentorial primitive neuroectodermal tumour, and 1/172 with germ cell tumour. The inheritance was investigated in 17 families. DICER1 mutations were identified in 25 relatives: 17 were unaffected, one mother had ovarian Sertoli–Leydig tumour, one half-sibling had cystic nephroma, and six relatives had non-toxic thyroid cysts/goitre. Analysis of eight tumours from DICER1 mutation-positive patients showed universal retention of the wild-type allele. DICER1 truncating mutations were identified in 4/781 cancer cell lines; all were in microsatellite unstable lines and therefore unlikely to be driver mutations.ConclusionConstitutional DICER1 haploinsufficiency predisposes to a broad range of tumours, making a substantial contribution to PPB, cystic nephroma and ovarian Sertoli–Leydig tumours, but a smaller contribution to other tumours. Most mutation carriers are unaffected, indicating that tumour risk is modest. The authors define the clinical contexts in which DICER1 mutation testing should be considered, the associated tumour risks, and the implications for at-risk individuals. They have termed this condition ‘DICER1 syndrome’.Accession numbersThe cDNA Genbank accession number for the DICER1 sequence reported in this paper is NM_030621.2.
Surveillance for subsequent neoplasms of the CNS for childhood, adolescent, and young adult cancer survivors: a systematic review and recommendations from the International Late Effects of Childhood Cancer Guideline Harmonization Group
Exposure to cranial radiotherapy is associated with an increased risk of subsequent CNS neoplasms among childhood, adolescent, and young adult (CAYA) cancer survivors. Surveillance for subsequent neoplasms can translate into early diagnoses and interventions that could improve cancer survivors' health and quality of life. The practice guideline presented here by the International Late Effects of Childhood Cancer Guideline Harmonization Group was developed with an evidence-based method that entailed the gathering and appraisal of published evidence associated with subsequent CNS neoplasms among CAYA cancer survivors. The preparation of these guidelines showed a paucity of high-quality evidence and highlighted the need for additional research to inform survivorship care. The recommendations are based on careful consideration of the evidence supporting the benefits, risks, and harms of the surveillance interventions, clinical judgment regarding individual patient circumstances, and the need to maintain flexibility of application across different health-care systems. Currently, there is insufficient evidence to establish whether early detection of subsequent CNS neoplasms reduces morbidity and mortality, and therefore no recommendation can be formulated for or against routine MRI surveillance. The decision to start surveillance should be made by the CAYA cancer survivor and health-care provider after careful consideration of the potential harms and benefits of surveillance for CNS neoplasms, including meningioma.
Metabolite profiling in retinoblastoma identifies novel clinicopathological subgroups
Background: Tumour classification, based on histopathology or molecular pathology, is of value to predict tumour behaviour and to select appropriate treatment. In retinoblastoma, pathology information is not available at diagnosis and only exists for enucleated tumours. Alternative methods of tumour classification, using noninvasive techniques such as magnetic resonance spectroscopy, are urgently required to guide treatment decisions at the time of diagnosis. Methods: High-resolution magic-angle spinning magnetic resonance spectroscopy (HR-MAS MRS) was undertaken on enucleated retinoblastomas. Principal component analysis and cluster analysis of the HR-MAS MRS data was used to identify tumour subgroups. Individual metabolite concentrations were determined and were correlated with histopathological risk factors for each group. Results: Multivariate analysis identified three metabolic subgroups of retinoblastoma, with the most discriminatory metabolites being taurine, hypotaurine, total-choline and creatine. Metabolite concentrations correlated with specific histopathological features: taurine was correlated with differentiation, total-choline and phosphocholine with retrolaminar optic nerve invasion, and total lipids with necrosis. Conclusions: We have demonstrated that a metabolite-based classification of retinoblastoma can be obtained using ex vivo magnetic resonance spectroscopy, and that the subgroups identified correlate with histopathological features. This result justifies future studies to validate the clinical relevance of these subgroups and highlights the potential of in vivo MRS as a noninvasive diagnostic tool for retinoblastoma patient stratification.
Adjuvant use of laser in eyes with macular retinoblastoma treated with primary intravenous chemotherapy
BackgroundAdjuvant use of laser with systemic chemotherapy for treatment of retinoblastoma may reduce recurrence rates while also causing local side effects. Information is lacking on the effect of laser on visual outcomes.MethodsA retrospective review of two retinoblastoma centres in the United Kingdom was conducted. Patients were included if there was a macular tumour in at least one eye. Eyes that received chemotherapy alone were compared with eyes that received chemotherapy plus adjuvant laser.ResultsA total of 76 patients and 91 eyes were included in the study. Systemic chemotherapy alone was used in 71 eyes while chemotherapy plus laser was used in 20 eyes. Demographic characteristics of both groups were similar. Macular relapse rates were similar between groups: 22/71 (31%) eyes in chemotherapy group and 9/20 (45%) eyes in laser group (p=0.29). There was no increase in vitreous relapses in the laser group (2/20 eyes), compared with the chemotherapy group 10/71 eyes (p=0.99). Survival analysis demonstrated similar time to first relapse between groups. Final visual acuity was equal between groups with 6/15 or better present in 31.1% of eyes in the chemotherapy group and 37.5% of eyes in the laser group (p=0.76). Presence of tumour at the fovea was predictive of final visual acuity, regardless of treatment group.ConclusionAdjuvant laser in the treatment of retinoblastoma is safe and does not lead to increased rate of vitreous recurrence. Final visual acuity is determined by the presence of tumour at the fovea and not the use of laser.
Genetic Diagnosis of Retinoblastoma Using Aqueous Humour—Findings from an Extended Cohort
The identification of somatic RB1 variation is crucial to confirm the heritability of retinoblastoma. We and others have previously shown that, when tumour DNA is unavailable, cell-free DNA (cfDNA) derived from aqueous humour (AH) can be used to identify somatic RB1 pathogenic variation. Here we report RB1 pathogenic variant detection, as well as cfDNA concentration in an extended cohort of 75 AH samples from 68 patients. We show cfDNA concentration is highly variable and significantly correlated with the collection point of the AH. Cell-free DNA concentrations above 5 pg/µL enabled the detection of 93% of known or expected RB1 pathogenic variants. In AH samples collected during intravitreal chemotherapy treatment (Tx), the yield of cfDNA above 5 pg/µL and subsequent variant detection was low (≤46%). However, AH collected by an anterior chamber tap after one to three cycles of primary chemotherapy (Dx1+) enabled the detection of 75% of expected pathogenic variants. Further limiting our analysis to Dx1+ samples taken after ≤2 cycles (Dx ≤ 2) provided measurable levels of cfDNA in all cases, and a subsequent variant detection rate of 95%. Early AH sampling is therefore likely to be important in maximising cfDNA concentration and the subsequent detection of somatic RB1 pathogenic variants in retinoblastoma patients undergoing conservative treatment.