Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
30
result(s) for
"Jenko, Janez"
Sort by:
A computationally feasible multi-trait single-step genomic prediction model with trait-specific marker weights
2024
Background
Regions of genome-wide marker data may have differing influences on the evaluated traits. This can be reflected in the genomic models by assigning different weights to the markers, which can enhance the accuracy of genomic prediction. However, the standard multi-trait single-step genomic evaluation model can be computationally infeasible when the traits are allowed to have different marker weights.
Results
In this study, we developed and implemented a multi-trait single-step single nucleotide polymorphism best linear unbiased prediction (SNPBLUP) model for large genomic data evaluations that allows for the use of precomputed trait-specific marker weights. The modifications to the standard single-step SNPBLUP model were minor and did not significantly increase the preprocessing workload. The model was tested using simulated data and marker weights precomputed using BayesA. Based on the results, memory requirements and computing time per iteration slightly increased compared to the standard single-step model without weights. Moreover, convergence of the model was slower when using marker weights, which resulted in longer total computing time. The use of marker weights, however, improved prediction accuracy.
Conclusions
We investigated a single-step SNPBLUP model that can be used to accommodate trait-specific marker weights. The marker-weighted single-step model improved prediction accuracy. The approach can be used for large genomic data evaluations using precomputed marker weights.
Journal Article
Initiating maize pre-breeding programs using genomic selection to harness polygenic variation from landrace populations
by
Gorjanc, Gregor
,
Hearne, Sarah J.
,
Hickey, John M.
in
Animal Genetics and Genomics
,
Biomedical and Life Sciences
,
Breeding
2016
Background
The limited genetic diversity of elite maize germplasms raises concerns about the potential to breed for new challenges. Initiatives have been formed over the years to identify and utilize useful diversity from landraces to overcome this issue. The aim of this study was to evaluate the proposed designs to initiate a pre-breeding program within the Seeds of Discovery (SeeD) initiative with emphasis on harnessing polygenic variation from landraces using genomic selection. We evaluated these designs with stochastic simulation to provide decision support about the effect of several design factors on the quality of resulting (pre-bridging) germplasm. The evaluated design factors were: i) the approach to initiate a pre-breeding program from the selected landraces, doubled haploids of the selected landraces, or testcrosses of the elite hybrid and selected landraces, ii) the genetic parameters of landraces and phenotypes, and iii) logistical factors related to the size and management of a pre-breeding program.
Results
The results suggest a pre-breeding program should be initiated directly from landraces. Initiating from testcrosses leads to a rapid reconstruction of the elite donor genome during further improvement of the pre-bridging germplasm. The analysis of accuracy of genomic predictions across the various design factors indicate the power of genomic selection for pre-breeding programs with large genetic diversity and constrained resources for data recording. The joint effect of design factors was summarized with decision trees with easy to follow guidelines to optimize pre-breeding efforts of SeeD and similar initiatives.
Conclusions
Results of this study provide guidelines for SeeD and similar initiatives on how to initiate pre-breeding programs that aim to harness polygenic variation from landraces.
Journal Article
Meta-analysis for milk fat and protein percentage using imputed sequence variant genotypes in 94,321 cattle from eight cattle breeds
by
Boichard, Didier
,
Goddard, Mike E.
,
Sanchez, Marie-Pierre
in
Agriculture
,
Amino acid sequence
,
Analysis
2020
Background
Sequence-based genome-wide association studies (GWAS) provide high statistical power to identify candidate causal mutations when a large number of individuals with both sequence variant genotypes and phenotypes is available. A meta-analysis combines summary statistics from multiple GWAS and increases the power to detect trait-associated variants without requiring access to data at the individual level of the GWAS mapping cohorts. Because linkage disequilibrium between adjacent markers is conserved only over short distances across breeds, a multi-breed meta-analysis can improve mapping precision.
Results
To maximise the power to identify quantitative trait loci (QTL), we combined the results of nine within-population GWAS that used imputed sequence variant genotypes of 94,321 cattle from eight breeds, to perform a large-scale meta-analysis for fat and protein percentage in cattle. The meta-analysis detected (p ≤ 10
−8
) 138 QTL for fat percentage and 176 QTL for protein percentage. This was more than the number of QTL detected in all within-population GWAS together (124 QTL for fat percentage and 104 QTL for protein percentage). Among all the lead variants, 100 QTL for fat percentage and 114 QTL for protein percentage had the same direction of effect in all within-population GWAS. This indicates either persistence of the linkage phase between the causal variant and the lead variant across breeds or that some of the lead variants might indeed be causal or tightly linked with causal variants. The percentage of intergenic variants was substantially lower for significant variants than for non-significant variants, and significant variants had mostly moderate to high minor allele frequencies. Significant variants were also clustered in genes that are known to be relevant for fat and protein percentages in milk.
Conclusions
Our study identified a large number of QTL associated with fat and protein percentage in dairy cattle. We demonstrated that large-scale multi-breed meta-analysis reveals more QTL at the nucleotide resolution than within-population GWAS. Significant variants were more often located in genic regions than non-significant variants and a large part of them was located in potentially regulatory regions.
Journal Article
Analysis of a large dataset reveals haplotypes carrying putatively recessive lethal and semi-lethal alleles with pleiotropic effects on economically important traits in beef cattle
2019
Background
In livestock, deleterious recessive alleles can result in reduced economic performance of homozygous individuals in multiple ways, e.g. early embryonic death, death soon after birth, or semi-lethality with incomplete penetrance causing reduced viability. While death is an easy phenotype to score, reduced viability is not as easy to identify. However, it can sometimes be observed as reduced conception rates, longer calving intervals, or lower survival for live born animals.
Methods
In this paper, we searched for haplotypes that carry putatively recessive lethal or semi-lethal alleles in 132,725 genotyped Irish beef cattle from five breeds: Aberdeen Angus, Charolais, Hereford, Limousin, and Simmental. We phased the genotypes in sliding windows along the genome and used five tests to identify haplotypes with absence of or reduced homozygosity. Then, we associated the identified haplotypes with 44,351 insemination records that indicated early embryonic death, and postnatal survival records. Finally, we assessed haplotype pleiotropy by estimating substitution effects on estimates of breeding value for 15 economically important traits in beef production.
Results
We found support for one haplotype that carries a putatively recessive lethal (chromosome 16 in Simmental) and two haplotypes that carry semi-lethal alleles (chromosome 14 in Aberdeen Angus and chromosome 19 in Charolais), with population frequencies of 8.8, 15.2, and 14.4%, respectively. These three haplotypes showed pleiotropic effects on economically important traits for beef production. Their allele substitution effects are €2.30, €3.42, and €1.47 for the terminal index and €1.03, − €3.11, and − €0.88 for the replacement index, where the standard deviations for the terminal index are €22.52, €18.65, and €22.70 and for the replacement index they are €31.35, €29.82, and €35.79. We identified
ZFAT
as the candidate gene for semi-lethality in Aberdeen Angus, several candidate genes for the lethal Simmental haplotype, and no candidate genes for the semi-lethal Charolais haplotype.
Conclusions
We analysed genotype, reproduction, survival, and production data to detect haplotypes that carry putatively recessive lethal or semi-lethal alleles in Irish beef cattle and identified one lethal and two semi-lethal haplotypes, which have pleiotropic effects on economically important traits in beef production.
Journal Article
Extending long-range phasing and haplotype library imputation algorithms to large and heterogeneous datasets
2020
Background
We describe the latest improvements to the long-range phasing (LRP) and haplotype library imputation (HLI) algorithms for successful phasing of both datasets with one million individuals and datasets genotyped using different sets of single nucleotide polymorphisms (SNPs). Previous publicly available implementations of the LRP algorithm implemented in AlphaPhase could not phase large datasets due to the computational cost of defining surrogate parents by exhaustive all-against-all searches. Furthermore, the AlphaPhase implementations of LRP and HLI were not designed to deal with large amounts of missing data that are inherent when using multiple SNP arrays.
Methods
We developed methods that avoid the need for all-against-all searches by performing LRP on subsets of individuals and then concatenating the results. We also extended LRP and HLI algorithms to enable the use of different sets of markers, including missing values, when determining surrogate parents and identifying haplotypes. We implemented and tested these extensions in an updated version of AlphaPhase, and compared its performance to the software package Eagle2.
Results
A simulated dataset with one million individuals genotyped with the same 6711 SNPs for a single chromosome took less than a day to phase, compared to more than seven days for Eagle2. The percentage of correctly phased alleles at heterozygous loci was 90.2 and 99.9% for AlphaPhase and Eagle2, respectively. A larger dataset with one million individuals genotyped with 49,579 SNPs for a single chromosome took AlphaPhase 23 days to phase, with 89.9% of alleles at heterozygous loci phased correctly. The phasing accuracy was generally lower for datasets with different sets of markers than with one set of markers. For a simulated dataset with three sets of markers, 1.5% of alleles at heterozygous positions were phased incorrectly, compared to 0.4% with one set of markers.
Conclusions
The improved LRP and HLI algorithms enable AlphaPhase to quickly and accurately phase very large and heterogeneous datasets. AlphaPhase is an order of magnitude faster than the other tested packages, although Eagle2 showed a higher level of phasing accuracy. The speed gain will make phasing achievable for very large genomic datasets in livestock, enabling more powerful breeding and genetics research and application.
Journal Article
Removal of alleles by genome editing (RAGE) against deleterious load
2019
Background
In this paper, we simulate deleterious load in an animal breeding program, and compare the efficiency of genome editing and selection for decreasing it. Deleterious variants can be identified by bioinformatics screening methods that use sequence conservation and biological prior information about protein function. However, once deleterious variants have been identified, how can they be used in breeding?
Results
We simulated a closed animal breeding population that is subject to both natural selection against deleterious load and artificial selection for a quantitative trait representing the breeding goal. Deleterious load was polygenic and was due to either codominant or recessive variants. We compared strategies for removal of deleterious alleles by genome editing (RAGE) to selection against carriers. When deleterious variants were codominant, the best strategy for prioritizing variants was to prioritize low-frequency variants. When deleterious variants were recessive, the best strategy was to prioritize variants with an intermediate frequency. Selection against carriers was inefficient when variants were codominant, but comparable to editing one variant per sire when variants were recessive.
Conclusions
Genome editing of deleterious alleles reduces deleterious load, but requires the simultaneous editing of multiple deleterious variants in the same sire to be effective when deleterious variants are recessive. In the short term, selection against carriers is a possible alternative to genome editing when variants are recessive. Our results suggest that, in the future, there is the potential to use RAGE against deleterious load in animal breeding.
Journal Article
A Strategy To Exploit Surrogate Sire Technology in Livestock Breeding Programs
2019
In this work, we performed simulations to develop and test a strategy for exploiting surrogate sire technology in animal breeding programs. Surrogate sire technology allows the creation of males that lack their own germline cells, but have transplanted spermatogonial stem cells from donor males. With this technology, a single elite male donor could give rise to huge numbers of progeny, potentially as much as all the production animals in a particular time period. One hundred replicates of various scenarios were performed. Scenarios followed a common overall structure but differed in the strategy used to identify elite donors and how these donors were used in the product development part. The results of this study showed that using surrogate sire technology would significantly increase the genetic merit of commercial sires, by as much as 6.5 to 9.2 years’ worth of genetic gain compared to a conventional breeding program. The simulations suggested that a strategy involving three stages (an initial genomic test followed by two subsequent progeny tests) was the most effective of all the strategies tested. The use of one or a handful of elite donors to generate the production animals would be very different to current practice. While the results demonstrate the great potential of surrogate sire technology there are considerable risks but also other opportunities. Practical implementation of surrogate sire technology would need to account for these.
Journal Article
Potential of promotion of alleles by genome editing to improve quantitative traits in livestock breeding programs
2015
Abstract Background Genome editing (GE) is a method that enables specific nucleotides in the genome of an individual to be changed. To date, use of GE in livestock has focussed on simple traits that are controlled by a few quantitative trait nucleotides (QTN) with large effects. The aim of this study was to evaluate the potential of GE to improve quantitative traits that are controlled by many QTN, referred to here as promotion of alleles by genome editing (PAGE). Methods Multiple scenarios were simulated to test alternative PAGE strategies for a quantitative trait. They differed in (i) the number of edits per sire (0 to 100), (ii) the number of edits per generation (0 to 500), and (iii) the extent of use of PAGE (i.e. editing all sires or only a proportion of them). The base line scenario involved selecting individuals on true breeding values (i.e., genomic selection only (GS only)-genomic selection with perfect accuracy) for several generations. Alternative scenarios complemented this base line scenario with PAGE (GS + PAGE). The effect of different PAGE strategies was quantified by comparing response to selection, changes in allele frequencies, the number of distinct QTN edited, the sum of absolute effects of the edited QTN per generation, and inbreeding. Results Response to selection after 20 generations was between 1.08 and 4.12 times higher with GS + PAGE than with GS only. Increases in response to selection were larger with more edits per sire and more sires edited. When the total resources for PAGE were limited, editing a few sires for many QTN resulted in greater response to selection and inbreeding compared to editing many sires for a few QTN. Between the scenarios GS only and GS + PAGE, there was little difference in the average change in QTN allele frequencies, but there was a major difference for the QTN with the largest effects. The sum of the effects of the edited QTN decreased across generations. Conclusions This study showed that PAGE has great potential for application in livestock breeding programs, but inbreeding needs to be managed.
Journal Article
Potential of gene drives with genome editing to increase genetic gain in livestock breeding programs
by
Gonen, Serap
,
Gorjanc, Gregor
,
Mileham, Alan J.
in
Agriculture
,
Alleles
,
Animal Genetics and Genomics
2017
Background
This paper uses simulation to explore how gene drives can increase genetic gain in livestock breeding programs. Gene drives are naturally occurring phenomena that cause a mutation on one chromosome to copy itself onto its homologous chromosome.
Methods
We simulated nine different breeding and editing scenarios with a common overall structure. Each scenario began with 21 generations of selection, followed by 20 generations of selection based on true breeding values where the breeder used selection alone, selection in combination with genome editing, or selection with genome editing and gene drives. In the scenarios that used gene drives, we varied the probability of successfully incorporating the gene drive. For each scenario, we evaluated genetic gain, genetic variance
(
σ
A
2
)
, rate of change in inbreeding (
Δ
F
), number of distinct quantitative trait nucleotides (QTN) edited, rate of increase in favourable allele frequencies of edited QTN and the time to fix favourable alleles.
Results
Gene drives enhanced the benefits of genome editing in seven ways: (1) they amplified the increase in genetic gain brought about by genome editing; (2) they amplified the rate of increase in the frequency of favourable alleles and reduced the time it took to fix them; (3) they enabled more rapid targeting of QTN with lesser effect for genome editing; (4) they distributed fixed editing resources across a larger number of distinct QTN across generations; (5) they focussed editing on a smaller number of QTN within a given generation; (6) they reduced the level of inbreeding when editing a subset of the sires; and (7) they increased the efficiency of converting genetic variation into genetic gain.
Conclusions
Genome editing in livestock breeding results in short-, medium- and long-term increases in genetic gain. The increase in genetic gain occurs because editing increases the frequency of favourable alleles in the population. Gene drives accelerate the increase in allele frequency caused by editing, which results in even higher genetic gain over a shorter period of time with no impact on inbreeding.
Journal Article
Removal of alleles by genome editing (RAGE) against deleterious load
2019
Abstract Background In this paper, we simulate deleterious load in an animal breeding program, and compare the efficiency of genome editing and selection for decreasing it. Deleterious variants can be identified by bioinformatics screening methods that use sequence conservation and biological prior information about protein function. However, once deleterious variants have been identified, how can they be used in breeding? Results We simulated a closed animal breeding population that is subject to both natural selection against deleterious load and artificial selection for a quantitative trait representing the breeding goal. Deleterious load was polygenic and was due to either codominant or recessive variants. We compared strategies for removal of deleterious alleles by genome editing (RAGE) to selection against carriers. When deleterious variants were codominant, the best strategy for prioritizing variants was to prioritize low-frequency variants. When deleterious variants were recessive, the best strategy was to prioritize variants with an intermediate frequency. Selection against carriers was inefficient when variants were codominant, but comparable to editing one variant per sire when variants were recessive. Conclusions Genome editing of deleterious alleles reduces deleterious load, but requires the simultaneous editing of multiple deleterious variants in the same sire to be effective when deleterious variants are recessive. In the short term, selection against carriers is a possible alternative to genome editing when variants are recessive. Our results suggest that, in the future, there is the potential to use RAGE against deleterious load in animal breeding.
Journal Article