Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,297 result(s) for "Jensen, Robert T"
Sort by:
Epidemiological trends of pancreatic and gastrointestinal neuroendocrine tumors in Japan: a nationwide survey analysis
Background Although neuroendocrine tumors (NETs) are rare, the number of patients with NET is increasing. However, in Japan, there have been no epidemiological studies on NET since 2005; thus, the prevalence of NET remains unknown. Methods We reported the epidemiology of gastroenteropancreatic neuroendocrine tumors (GEP-NETs) [pancreatic neuroendocrine tumors (PNETs) and gastrointestinal neuroendocrine tumors (GI-NETs)] in Japan in 2005. Here, we conducted the second nationwide survey on patients with GEP-NETs who received treatment in 2010. Results A total of 3,379 patients received treatment for PNETs in 2010, representing a 1.2-fold increase in the number of patients from 2005 to 2010. The prevalence was estimated to be 2.69/100,000, with an annual onset incidence of 1.27/100,000 in 2010. Non-functioning tumor (NF)-PNETs comprised 65.5 % of cases followed by insulinoma (20.9 %) and gastrinoma (8.2 %). Interestingly, the number of patients with NF-PNETs increased ~1.8 fold since 2005. A total of 19.9 % of patients exhibited distant metastasis at initial diagnosis; 4.3 % had complications with multiple endocrine neoplasia type 1 (MEN-1), and only 4.0 % had NF-PNETs associated with MEN-1. Meanwhile, an estimated 8,088 patients received treatment for GI-NETs, representing a ~1.8-fold increase since 2005. The prevalence was estimated to be 6.42/100,000, with an annual onset incidence of 3.51/100,000. The locations of GI-NETs varied: foregut, 26.1 %; midgut, 3.6 %; and hindgut, 70.3 %. Distant metastasis and complications with MEN-1 were observed in 6.0 and 0.42 % at initial diagnosis, respectively. The frequency of carcinoid syndrome in patients with GI-NETs was 3.2 %. Conclusion We clarified the epidemiological changes in GEP-NETs from 2005 to 2010 in Japan.
Therapy of metastatic pancreatic neuroendocrine tumors (pNETs) : recent insights and advances
Neuroendocrine tumors (NETs) [carcinoids, pancreatic neuroendocrine tumors (pNETs)] are becoming an increasing clinical problem because not only are they increasing in frequency, but they can frequently present with advanced disease that requires diagnostic and treatment approaches different from those used in the neoplasms that most physicians are used to seeing and treating. In the past few years there have been numerous advances in all aspects of NETs including: an understanding of their unique pathogenesis; specific classification systems developed which have prognostic value; novel methods of tumor localization developed; and novel treatment approaches described. In patients with advanced metastatic disease these include the use of newer chemotherapeutic approaches, an increased understanding of the role of surgery and cytoreductive methods, the development of methods for targeted delivery of cytotoxic agents, and the development of targeted medical therapies (everolimus, sunitinib) based on an increased understanding of the disease biology. Although pNETs and gastrointestinal NETs share many features, recent studies show they differ in pathogenesis and in many aspects of diagnosis and treatment, including their responsiveness to different therapies. Because of limited space, this review will be limited to the advances made in the management and treatment of patients with advanced metastatic pNETs over the past 5 years.
Epidemiological study of gastroenteropancreatic neuroendocrine tumors in Japan
Background There have been few epidemiological studies on gastroenteropancreatic neuroendocrine tumors (GEP-NETs) in Japan. Methods We examined the epidemiology of GEP-NETs [pancreatic endocrine tumors (PETs) and gastrointestinal neuroendocrine tumors (GI-NETs)] in Japan in 2005 using a nationwide stratified random sampling method. Results A total of 2,845 individuals received treatment for PETs. Prevalence was estimated as 2.23/100,000 with an annual onset incidence of 1.01/100,000. Non-functioning tumor (NF)-PET constituted 47.4%, followed by insulinoma (38.2%) and gastrinoma (7.9%). Distant metastases were reported in 21% patients with NF-PETs and occurred more frequently as tumor size increased (>2 cm). Multiple endocrine neoplasia type 1 (MEN-1) was detected in 10% of PETs but only in 6.1% of NF-PETs. NF-PETs were detected incidentally by physical examination in 24% patients. In 2005, an estimated 4,406 patients received treatment for GI-NETs. Prevalence was estimated as 3.45/100,000, with an annual onset incidence of 2.10/100,000. The locations of GI-NETs varied: foregut, 30.4%; midgut, 9.6%; and hindgut, 60.0%. Distant metastases were observed in 6%. Lymph node metastases occurred more frequently as tumor size increased (>1 cm). The frequency of MEN-1 complications was 1%. Physical examination revealed GI-NETs in 44% patients. The frequency of symptomatic GI-NETs was 3.4%. Interestingly, 77.1% of patients with foregut GI-NETs had type A gastritis. Conclusion Our results show there are large differences in GEP-NETs between Japan and Western nations, primarily due to differences in the presence of MEN-1 in NF-PETs and the location, symptomatic status, and prevalence of malignancy in GI-NETs.
The Important Role of p21-Activated Kinases in Pancreatic Exocrine Function
The p21-activated kinases (PAKs) are a conserved family of serine/threonine protein kinases, which are effectors for the Rho family GTPases, namely, Rac/Cdc42. PAKs are divided into two groups: group I (PAK1–3) and group II (PAK4–6). Both groups of PAKs have been well studied in apoptosis, protein synthesis, glucose homeostasis, growth (proliferation and survival) and cytoskeletal regulation, as well as in cell motility, proliferation and cycle control. However, little is known about the role of PAKs in the secretory tissues, including in exocrine tissue, such as the exocrine pancreas (except for islet function and pancreatic cancer growth). Recent studies have provided insights supporting the importance of PAKs in exocrine pancreas. This review summarizes the recent insights into the importance of PAKs in the exocrine pancreas by reviewing their presence and activation; the ability of GI hormones/neurotransmitters/GFs/post-receptor activators to activate them; the kinetics of their activation; the participation of exocrine-tissue PAKs in activating the main growth-signaling cascade; their roles in the stimulation of enzyme secretion; finally, their roles in pancreatitis. These insights suggest that PAKs could be more important in exocrine/secretory tissues than currently appreciated and that their roles should be explored in more detail in the future.
Giffen Behavior and Subsistence Consumption
This paper provides the first real-world evidence of Giffen behavior, i.e., upward sloping demand. Subsidizing the prices of dietary staples for extremely poor households in two provinces of China, we find strong evidence of Giffen behavior for rice in Hunan, and weaker evidence for wheat in Gansu. The data provide new insight into the consumption behavior of the poor, who act as though maximizing utility subject to subsistence concerns. We find that their elasticity of demand depends significantly, and nonlinearly, on the severity of their poverty. Understanding this heterogeneity is important for the effective design of welfare programs for the poor.
Successful Lifetime/Long-Term Medical Treatment of Acid Hypersecretion in Zollinger-Ellison Syndrome (ZES): Myth or Fact? Insights from an Analysis of Results of NIH Long-Term Prospective Studies of ZES
Analysis of the efficacy/pharmacology of long-term/lifetime medical treatment of acid hypersecretion in a large cohort of ZES patients in a prospective study. This study includes the results from all 303 patients with established ZES who were prospectively followed and received acid antisecretory treatment with either H2Rs or PPIs, with antisecretory doses individually titrated by the results of regular gastric acid testing. The study includes patients treated for short-term periods (<5 yrs), patients treated long-term (>5 yrs), and patients with lifetime treatment (30%) followed for up to 48 years (mean 14 yrs). Long-term/lifelong acid antisecretory treatment with H2Rs/PPIs can be successfully carried out in all patients with both uncomplicated and complicated ZES (i.e., with MEN1/ZES, previous Billroth 2, severe GERD). This is only possible if drug doses are individually set by assessing acid secretory control to establish proven criteria, with regular reassessments and readjustments. Frequent dose changes both upward and downward are needed, as well as regulation of the dosing frequency, and there is a primary reliance on the use of PPIs. Prognostic factors predicting patients with PPI dose changes are identified, which need to be studied prospectively to develop a useful predictive algorithm that could be clinically useful for tailored long-term/lifetime therapy in these patients.
Gastroenteropancreatic neuroendocrine tumours
Gastroenteropancreatic (GEP) neuroendocrine tumours (NETs) are fairly rare neoplasms that present many clinical challenges. They secrete peptides and neuroamines that cause distinct clinical syndromes, including carcinoid syndrome. However, many are clinically silent until late presentation with mass effects. Investigation and management should be highly individualised for a patient, taking into consideration the likely natural history of the tumour and general health of the patient. Management strategies include surgery for cure (which is achieved rarely) or for cytoreduction, radiological intervention (by chemoembolisation and radiofrequency ablation), chemotherapy, and somatostatin analogues to control symptoms that result from release of peptides and neuroamines. New biological agents and somatostatin-tagged radionuclides are under investigation. The complexity, heterogeneity, and rarity of GEP NETs have contributed to a paucity of relevant randomised trials and little or no survival increase over the past 30 years. To improve outcome from GEP NETs, a better understanding of their biology is needed, with emphasis on molecular genetics and disease modeling. More-reliable serum markers, better tumour localisation and identification of small lesions, and histological grading systems and classifications with prognostic application are needed. Comparison between treatments is currently very difficult. Progress is unlikely to occur without development of centers of excellence, with dedicated combined clinical teams to coordinate multicentre studies, maintain clinical and tissue databases, and refine molecularly targeted therapeutics.
Peptide G-Protein-Coupled Receptors and ErbB Receptor Tyrosine Kinases in Cancer
The ErbB RTKs (EGFR, HER2, HER3, and HER4) have been well-studied in cancer. EGFR, HER2, and HER3 stimulate cancer proliferation, principally by activating the phosphatidylinositol-3-kinase and extracellular signal-regulated kinase (ERK) pathways, resulting in increased cancer cell survival and proliferation. Cancer cells have high densities of the EGFR, HER2, and HER3 causing phosphorylation of tyrosine amino acids on protein substrates and tyrosine amino acids near the C-terminal of the RTKs. After transforming growth factor (TGF) α binds to the EGFR, homodimers or EGFR heterodimers form. HER2 forms heterodimers with the EGFR, HER3, and HER4. The EGFR, HER2, and HER3 are overexpressed in lung cancer patient tumors, and monoclonal antibodies (mAbs), such as Herceptin against HER2, are used to treat breast cancer patients. Patients with EGFR mutations are treated with tyrosine kinase inhibitors, such as gefitinib or osimertinib. Peptide GPCRs, such as NTSR1, are present in many cancers, and neurotensin (NTS) stimulates the growth of cancer cells. Lung cancer proliferation is impaired by SR48692, an NTSR1 antagonist. SR48692 is synergistic with gefitinib at inhibiting lung cancer growth. Adding NTS to lung cancer cells increases the shedding of TGFα, which activates the EGFR, or neuregulin-1, which activates HER3. The transactivation process is impaired by SRC, matrix metalloprotease, and reactive oxygen species inhibitors. While the transactivation process is complicated, it is fast and occurs within minutes after adding NTS to cancer cells. This review emphasizes the use of tyrosine kinase inhibitors and SR48692 to impair transactivation and cancer growth.
Gastrin-Releasing Peptide Receptors Stimulate MAPK-Mediated Growth of Lung Cancer Cells by Transactivating HER4 in a Neuregulin-1, MAP Kinase-Dependent Manner Requiring Activation of the ROS-System
The bombesin (Bn) receptor family [Gastrin-releasing peptide (GRPR/BB2R) and Neuromedin B receptors (NMBR/BB1R)] are G-protein coupled receptors (GPCR’s) with potent growth effects on normal tissues/numerous cancers, often by transactivating the ErbB receptor-tyrosine kinase (RTK) family. Whereas GRPR stimulation transactivates ErbB RTKs EGFR, HER2, and HER3 in non-small cell lung-cancer (NSCLC) cells, its effects on HER4 are unknown. This study was designed to address this question. Of 12 NSCLC’s studied, 75% had HER4 mRNA expression and Western-Blotting. NCI-H522 and NCI-H661-cells had high levels of GRPR, HER4, and the HER4-ligand neuregulin (NRG1). Adding GRP to NCI-H522/NCI-H661-cells activated HER4, shown by its increased phosphorylation (P-HER4). The GRPR antagonists PD176252/BW2258U89 inhibited this increase. In NCI-H661-cells, GRP stimulated the formation of HER4-homodimers and HER2-HER4-heterodimers. Adding GRP to these NSCLC-cells increased P-ERK/P-AKT, which was inhibited by siRNA-HER4, PD176252, and ibrutinib, as well as N-acetylcysteine and Tiron, which reduce reactive-oxygen species (ROS). GRP increased secretion of NRG1 from NSCLC-cells, and NRG1 increased P-HER4 and P-ERK, which were impaired by ibrutinib. GRP and NRG1 stimulated proliferation of NSCLC-cells, which was inhibited by PD176252, siRNA-HER4, or ibrutinib and which was mediated by MAPK, not AKT/PI3K, activation. These results show GRPR activation results in HER4 transactivation in a ROS-dependent manner, which stimulates NSCLC-growth through a MAPK-mediated mechanism.
Promising Advances in the Treatment of Malignant Pancreatic Endocrine Tumors
Pancreatic neuroendocrine tumors are classified as functional (10 to 30% of the tumors) or nonfunctional (50 to 80%). 1 Functional pancreatic neuroendocrine tumors have long fascinated physicians because they produce florid syndromes, owing to ectopic secretion of various biologically active hormones (e.g., insulin and gastrin). 1 In the past, the hormone excess syndrome was the leading cause of death; however, with advances in surgical and medical treatments, the natural history of pancreatic neuroendocrine tumors is becoming the major determinant of death in patients with functional tumors, similar to patients with nonfunctional tumors. This is occurring because more than 50% of all pancreatic . . .