Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
303
result(s) for
"Jeonghoon Lee"
Sort by:
Performance Test of MicroAeth® AE51 at Concentrations Lower than 2 μg/m3 in Indoor Laboratory
2019
It is difficult to find information about how the microAeth® AE51 performs, in spite of its versatility for about a decade in various research fields such as black carbon measurements and personal exposure studies. Stimulated by this, we conducted real-time tests for indoor aerosol in order to provide performance characteristics toward proper usage. We calculated the attenuation (ATN) using the reference signal together with the sensing signal to compare it with the ATN recorded in a microAeth® AE51. Performance was evaluated under extremely low concentration through the zero test, using filtered clean air. Ten-day-long continuous measurements were done for both indoor aerosol and filtered particle free air to examine the feasibility of microAeth® AE51 in an indoor use. Generally, MicroAeth® AE51 exhibited excellent performance, though it showed relatively low performance under some conditions. Noise was intensified while it was directly connected to a power adaptor. Another issue includes the occurrence of negative concentrations for extremely clean air. The noise amplification turned out to be related to a power source independent on the internal battery, and it was able to be removed by post-processing. Uncertainty analysis was carried out to better understand the origin of unwanted noise. Technical perspective of a proper usage will be addressed with regard to what will play a role for a long-term monitoring.
Journal Article
Measurement of Light Absorbing Aerosols with Folded-Jamin Photothermal Interferometry
2020
In this study, a photothermal interferometer was developed, based on a folded-Jamin polarization instrument with refractive-index sensitive configuration, in order to characterize light-absorbing aerosols. The feasibility of our interferometric technique was demonstrated by performing photothermal spectroscopy characterizing spark-generated black carbon particles with atmospherically relevant concentrations and atmospheric aerosols in a metropolitan area. The sensitivity of this interferometric system for both laboratory-generated aerosols and atmospheric aerosols was ~ 1 (μg/m3)/μV, which is sufficient for the monitoring of black carbon aerosol in urban areas.
Journal Article
Vegetation Drought Vulnerability Mapping Using a Copula Model of Vegetation Index and Meteorological Drought Index
by
Seo, Jiyu
,
Lee, Jeonghoon
,
Lee, Okjeong
in
Atmospheric models
,
Atmospheric moisture
,
Bivariate analysis
2021
Since vegetation is closely related to a variety of hydrological factors, the vegetation condition during a drought is greatly affected by moisture supply or moisture demand from the atmosphere. However, since feedback between vegetation and climate in the event of drought is very complex, it is necessary to construct a joint probability distribution that can describe and investigate the interrelationships between them. In other words, it is required to understand the interaction between vegetation and climate in terms of joint probability. In this study, the possibility of drought stress experienced by vegetation under various conditions occurring during drought was investigated by dividing drought into two aspects (atmospheric moisture supply and moisture demand). Meteorological drought indices that explain different aspects of drought and vegetation-related drought indexes that describe the state of vegetation were estimated using data remotely sensed by satellites in parts of Far East Asia centered on South Korea. Bivariate joint probability distribution modeling was performed from vegetation drought index and meteorological drought index using Copula. It was found that the relationship between the vegetation drought index and the meteorological drought index has regional characteristics and there is also a seasonal change. From the copula-based model, it was possible to quantify the conditional probability distribution for the drought stress of vegetation under meteorological drought scenarios that occur from different causes. Through this, by mapping the vulnerability of vegetation to meteorological drought in the study area, it was possible to spatially check how the vegetation responds differently depending on the season and meteorological causes. The probabilistic mapping of vegetation vulnerability to various aspects of meteorological drought may provide useful information for establishing mitigation strategies for ecological drought.
Journal Article
Effect of mountainous rainfall on uncertainty in flood model parameter estimation
by
Lee, Jeonghoon
,
Kim, Sangdan
,
Choi, Jeonghyeon
in
Bayesian analysis
,
Bayesian theory
,
Climate change
2024
Explaining the significant variability of rainfall in orographically complex mountainous regions remains a challenging task even for modern raingauge networks. To address this issue, a real-time spatial rainfall field estimation model, called WREPN (WRF Rainfall-Elevation Parameterized Nowcasting), has been developed, incorporating the influence of mountain effect based on ground raingauge networks. In this study, we examined the effect of mountainous rainfall estimates on the uncertainty of flood model parameter estimation. As a comparison, an inverse distance weighting technique was applied to ground raingauge data to estimate the spatial rainfall field. To convert the spatial rainfall fields into flood volumes, we employed the ModClark model, a conceptual rainfall–runoff model with distributed rainfall input. Bayesian theory was applied for parameter estimation to incorporate uncertainty analysis. The ModClark model demonstrated good flood reproducibility regardless of the estimation method for spatial rainfall fields. Parameter estimation results indicated that the WREPN spatial rainfall field, which accounted for the influence of the mountain effect, led to lower curve numbers due to higher estimated rainfall compared to the IDW spatial rainfall field, while the concentration time and storage coefficient showed minimal differences.
Journal Article
Tower Crane Location Optimization for Heavy Unit Lifting in High-Rise Modular Construction
by
Lee, Dowan
,
Park, Moonseo
,
Lee, Jeonghoon
in
genetic algorithm (GA), high-rise construction
,
lifting plan
,
modular construction
2021
Modular construction, which involves unit production in factories and on-site work, has benefits such as low cost, high quality, and short duration, resulting from the controlled factory environment utilized. An efficient tower crane lifting plan ensures successful high-rise modular project completion. For improved efficiency, the lifting plan should minimize the reaching distance of the tower crane, because this distance directly affects the tower crane capacity, which is directly related to crane operation cost. In situations where units are lifted from trailers, the trailer-to-tower crane distance can have a significant impact on the tower crane operation efficiency. However, optimization of this distance to improve efficiency has not been sufficiently considered. This research proposes a genetic algorithm optimization model that suggests optimized tower crane and trailer locations. The case study results show that through the proposed model, the project manager can reflect the optimal location selection and optimal tower crane selection options with minimal cost.
Journal Article
Review on Applications of 17O in Hydrological Cycle
by
Nyamgerel, Yalalt
,
Han, Yeongcheol
,
Lee, Jeonghoon
in
17O-excess
,
Environmental conditions
,
Equilibrium
2021
The triple oxygen isotopes (16O, 17O, and 18O) are very useful in hydrological and climatological studies because of their sensitivity to environmental conditions. This review presents an overview of the published literature on the potential applications of 17O in hydrological studies. Dual-inlet isotope ratio mass spectrometry and laser absorption spectroscopy have been used to measure 17O, which provides information on atmospheric conditions at the moisture source and isotopic fractionations during transport and deposition processes. The variations of δ17O from the developed global meteoric water line, with a slope of 0.528, indicate the importance of regional or local effects on the 17O distribution. In polar regions, factors such as the supersaturation effect, intrusion of stratospheric vapor, post-depositional processes (local moisture recycling through sublimation), regional circulation patterns, sea ice concentration and local meteorological conditions determine the distribution of 17O-excess. Numerous studies have used these isotopes to detect the changes in the moisture source, mixing of different water vapor, evaporative loss in dry regions, re-evaporation of rain drops during warm precipitation and convective storms in low and mid-latitude waters. Owing to the large variation of the spatial scale of hydrological processes with their extent (i.e., whether the processes are local or regional), more studies based on isotopic composition of surface and subsurface water, convective precipitation, and water vapor, are required. In particular, in situ measurements are important for accurate simulations of atmospheric hydrological cycles by isotope-enabled general circulation models.
Journal Article
Association of lifestyle, physiological factors, and body composition with the facial skin microbiota in acne vulgaris
2026
The skin microbiota plays a crucial role in maintaining skin health and overall well-being. The composition of this microbial community is influenced by various host factors, including lifestyle habits, physiological parameters, and body composition.
1,053 participants were included in this study. The composition of the skin microbiota was determined by analysing facial skin microbiome collection, obtained after the consent of participants. Also, physical characteristics of each participant were evaluated using answers from questionnaire. Potential microorganisms that contribute to acne vulgaris development were investigated. Statistical analysis was then performed based on the characteristics of the patient and normal groups, and the differences in the bacterial ratio grade assigned to each individual.
, and
were significantly correlated with acne vulgaris. Several characteristics of the participants were closely correlated with the composition of the skin microbiota. There was significant differences among the participants' characteristics.
By analyzing the body composition and daily life of the study subjects, we identify associations of acne vulgaris and suggest specific lifestyle modifications that may be beneficial for acne sufferers.
Journal Article
Effects of intravenous inflammasome inhibitor (NuSepin) on suppression of proinflammatory cytokines release induced by cardiopulmonary bypass in swine model: a pilot study
by
Park, Jeong Jun
,
Kim, Eung Hwi
,
Lee, Jeonghoon
in
631/154
,
631/443/592
,
Administration, Intravenous
2024
The systemic inflammatory response syndrome can occur due to an inflammatory reaction to the release of cytokines, and it has been linked to the circulation of pro- and anti-inflammatory cytokines. The cardiopulmonary bypass (CPB) system is known to activate numerous inflammatory pathways. Applying CPB in large animals for an extended period may be useful as a controlled experimental model for systemic inflammatory responses. The authors hypothesized that 0.2 mg/kg NuSepin
®
would inhibit CBP-induced proinflammatory cytokine release, and attenuate CPB-induced vasoplegia. CPB was maintained for 2 h in 8 male Yorkshire pigs. Ten ml of saline was administered intravenously to the control group, while the study group received 10 ml of NuSepin
®
(0.2 mg/kg), before start of CPB. Blood samples were collected at four different time points to evaluating the level of cytokine (TNF-α, IL-1β, IL-6, IL-8) release during and after CBP. All vital signals were recorded as continuous waveforms using the vital recorder
®
. Our study demonstrated that IL-6 increased in both groups during CPB remained unchanged. However, in the Nusepin group, IL-6 levels rapidly decreased when CPB was stopped and the proinflammatory reaction subsided. Furthermore, the dose of norepinephrine required to maintain a mean pressure of 60 mmHg was also lower in the Nusepin group.
Journal Article
Review of Seawater Intrusion in Western Coastal Regions of South Korea
2021
Groundwater salinization in coastal aquifers because of seawater intrusion has raised serious concerns worldwide since it deteriorates the quality of drinking water and thereby threatens sustainable economic development. In particular, this problem has been a cause of growing concern in the western coastal regions of South Korea. In this paper, we review studies of seawater intrusion in western coastal regions of South Korea conducted over the past 20 years, particularly focusing on studies reported in international journals. We summarize the study locations, methods used, and major findings from individual and regional-scale studies. General methods used to identify and interpret seawater intrusion and subsequent geochemical processes are also presented. On the basis of insights gleaned from the previous studies, future research needs are discussed.
Journal Article
Behavioral and transcriptional effects of repeated electroconvulsive seizures in the neonatal MK-801-treated rat model of schizophrenia
by
Lee, Jeonghoon
,
Won, Sungho
,
Kang, Nuree
in
Advanced glycosylation end products
,
Animal models
,
Antipsychotics
2024
RationaleElectroconvulsive therapy (ECT) is an effective treatment modality for schizophrenia. However, its antipsychotic-like mechanism remains unclear.ObjectivesTo gain insight into the antipsychotic-like actions of ECT, this study investigated how repeated treatments of electroconvulsive seizure (ECS), an animal model for ECT, affect the behavioral and transcriptomic profile of a neurodevelopmental animal model of schizophrenia.MethodsTwo injections of MK-801 or saline were administered to rats on postnatal day 7 (PN7), and either repeated ECS treatments (E10X) or sham shock was conducted daily from PN50 to PN59. Ultimately, the rats were divided into vehicle/sham (V/S), MK-801/sham (M/S), vehicle/ECS (V/E), and MK-801/ECS (M/E) groups. On PN59, prepulse inhibition and locomotor activity were tested. Prefrontal cortex transcriptomes were analyzed with mRNA sequencing and network and pathway analyses, and quantitative real-time polymerase chain reaction (qPCR) analyses were subsequently conducted.ResultsPrepulse inhibition deficit was induced by MK-801 and normalized by E10X. In M/S vs. M/E model, Egr1, Mmp9, and S100a6 were identified as center genes, and interleukin-17 (IL-17), nuclear factor kappa B (NF-κB), and tumor necrosis factor (TNF) signaling pathways were identified as the three most relevant pathways. In the V/E vs. V/S model, mitophagy, NF-κB, and receptor for advanced glycation end products (RAGE) pathways were identified. qPCR analyses demonstrated that Igfbp6, Btf3, Cox6a2, and H2az1 were downregulated in M/S and upregulated in M/E.ConclusionsE10X reverses the behavioral changes induced by MK-801 and produces transcriptional changes in inflammatory, insulin, and mitophagy pathways, which provide mechanistic insight into the antipsychotic-like mechanism of ECT.
Journal Article