Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
767 result(s) for "Jeremiah, David"
Sort by:
Studies on the reduction of organic load from palm oil mill effluent (POME) by bacterial strains
Introduction Palm oil mill effluent (POME) contains large quantities of organic matter in the form of total suspended solids (TSS), volatile suspended solids (VSS), total solids (TS), oil and grease (O & G) that increase biochemical oxygen demand (BOD) and chemical oxygen demand (COD) of POME if left untreated. The main aim of the present study was to investigate the ability of bacterial strains either pure (individually) or mixed (combinations), to degrade and metabolize organic load from palm oil mill effluent. Results Sequencing of the 16S rRNA of the isolates suggests that they were identified as Micrococcus luteus 101 PB, Stenotrophomonas maltophilia 102 PB, Bacillus cereus 103 PB, Providencia vermicola 104 PB, Klebsiella pneumoniae 105 PB and Bacillus subtilis 106 PB. The use of mixed cultures in the present study showed more extensive removal of organic load (COD and BOD) than pure single cultures. Mixed cultures were found to reduce the pollutant dynamically. Thus, the mixed cultures C 1 ( Bacillus cereus 103 PB and Bacillus subtilis 106 PB) were the most effective bacterial combination for use in biological treatment technology of POME having the highest COD and BOD reduction rate. C 1 produced the highest degradative activity in reducing COD (90.64 %) and BOD (93.11 %). Conclusion The indigenous microbial isolates from POME were observed to possess potential to degrade organic components whereas the use of mixed cultures resulted in more extensive degradation of COD and BOD than pure single cultures. This suggests that mixed culture of bacteria in the present study can be used for bioremediation of environment contaminated with polluted wastewaters. This study, however, indicates the prospect of isolating indigenous microorganisms in the POME for effective biotreatment of POME.
String theory : David Foster Wallace on tennis
Collects essays about tennis in which the author challenges the sports memoir genre, profiles two of the world's greatest players, and shares his own experiences in his youth as a regionally ranked tennis player.
A review of potential factors contributing to epidemic cholera in Yemen
The menace of cholera epidemic occurrence in Yemen was reported in early 2017. Recent reports revealed that an estimated 500,000 people are infected with cholera whereas 2,000 deaths have been reported in Yemen. Cholera is transmitted through contaminated water and food. Yemen is the least developed country among the Middle East countries in terms of wastewater and solid waste management. The population of Yemen is about 24.5 million and generates about 70–100 million m3 of sewage. An estimated 7% of the population has sewerage systems. It has been revealed that 31.2 million m3 of untreated sewage is used for irrigation purposes especially for vegetables and Khat trees. In addition, more than 70% of the population in Yemen has no potable water. They depend on water wells as a water source which are located close to sewage disposal sites. The present review focuses on the current status of water, wastewater as well as solid waste management in Yemen and their roles in the outbreak of cholera. Future prospects for waste management have been proposed.
Prevalence of Antibiotic-Resistant Salmonella enterica Isolates from Ready-to-Eat Meat (Suya) and its Contact Surfaces in Minna Metropolis, Nigeria
This study evaluated microbial contamination, antibiotic resistance of Salmonella enterica and hygienic practices associated with ready-to-eat (RTE) meat (suya) in Minna Metropolis, Niger State, Nigeria. Three hundred and eighty-four (384) samples (suya meat, spices, knives, and vendor hands) were analyzed for microbial contamination and the presence of Salmonella enterica according to Bacteriological Analytical Manual of the U.S. Food and Drug Administration. Antibiotic resistance for Salmonella isolates was determined using the disk diffusion method. Vendor hygiene practices were assessed via questionnaires. The results revealed that microbial load ranged from 8.5 × 10⁷ to 2.35 × 10⁸ cfu/g or cfu/cm2 across all study locations, with the lowest from knives sampled at Tunga and highest from hand samples in Maikunkele. The overall prevalence of Salmonella enterica was 13%, with the lowest in spices and hand samples (9% each) and highest in suya meat (26%). The Salmonella enterica were highly resistant to amoxicillin (65%) and susceptible to trimethoprim-sulfamethoxazole (95%). Multidrug resistance was 43.1%. Resistant to amoxicillin was the commonest and was exhibited by 9 Salmonella enterica isolate. There was limited formal education (56.0%) and occupational training (51.3%) among suya vendors with poor adherence to hygienic practices. Training of suya vendors on hygienic handling of RTE meats is recommended.
External validation of stroke mimic prediction scales in the emergency department
Background Acute ischemic stroke is a time-sensitive emergency where accurate diagnosis is required promptly. Due to time pressures, stroke mimics who present with similar signs and symptoms as acute ischemic stroke, pose a diagnostic challenge to the emergency physician. With limited access to investigative tools, clinical prediction, tools based only on clinical features, may be useful to identify stroke mimics. We aim to externally validate the performance of 4 stroke mimic prediction scales, and derive a novel decision tree, to improve identification of stroke mimics. Methods We performed a retrospective cross-sectional study at a primary stroke centre, served by a telestroke hub. We included consecutive patients who were administered intravenous thrombolysis for suspected acute ischemic stroke from January 2015 to October 2017. Four stroke mimic prediction tools (FABS, simplified FABS, Telestroke Mimic Score and Khan Score) were rated simultaneously, using only clinical information prior to administration of thrombolysis. The final diagnosis was ascertained by an independent stroke neurologist. Area under receiver operating curve (AUROC) analysis was performed. A classification tree analysis was also conducted using variables which were found to be significant in the univariate analysis. Results Telestroke Mimic Score had the highest discrimination for stroke mimics among the 4 scores tested (AUROC = 0.75, 95% CI = 0.63–0.87). However, all 4 scores performed similarly (DeLong p  > 0.05). Telestroke Mimic Score had the highest sensitivity (91.3%), while Khan score had the highest specificity (88.2%). All 4 scores had high positive predictive value (88.1 to 97.5%) and low negative predictive values (4.7 to 32.3%). A novel decision tree, using only age, presence of migraine and psychiatric history, had a higher prediction performance (AUROC = 0.80). Conclusion Four tested stroke mimic prediction scales performed similarly to identify stroke mimics in the emergency setting. A novel decision tree may improve the identification of stroke mimics.
Biosorption potential of lead tolerant fungi isolated from refuse dumpsite soil in Nigeria
Metals are non-biodegradable and recurrent in the environs. Heavy metals tolerant fungi were isolated from refuse dumpsite soil using pour plate method. These fungi were identified as Aspergillus niger, Penicillium chrysogenum and Rhizomucor sp. The fungal isolates were screened for cadmium (Cd), lead (Pb) and zinc (Zn) with concentration of 200ppm, 400ppm and 600ppm. Aspergillus niger and Penicillium chrysogenum showed high tolerance for the metals in contrast to the control. The fungi with high tolerance were used for biosorption study. However, Penicillium chrysogenum showed higher lead removal or biosorption potential of 1.07ppm, 3.35ppm and 4.19ppm as compared with Aspergillus niger with lead removal of 0.67ppm, 3.11ppm and 3.79ppm at 5th, 10th and 15th day respectively. One-way Analysis of Variance was used to interpret the data generated from the biosorption study which revealed that there was no significant different (p > 0.05) between the lead removal of Aspergillus niger and Penicillium chrysogenum on the 5th day but there was significant difference (p < 0.05) in the lead removal of Aspergillus niger and Penicillium chrysogenum on the 10th and 15th day. This study suggests the use of these fungal isolates for removal and biotreatment of heavy metal contaminated and polluted environment
Predicting Atrial Fibrillation after Ischemic Stroke: Clinical, Genetics, and Electrocardiogram Modelling
Abstract Introduction: Detection of atrial fibrillation (AF) is challenging in patients after ischaemic stroke due to its paroxysmal nature. We aimed to determine the utility of a combined clinical, electrocardiographic, and genetic variable model to predict AF in a post-stroke population. Materials and Methods: We performed a cohort study at a single comprehensive stroke centre from November 09, 2009, to October 31, 2017. All patients recruited were diagnosed with acute ischaemic stroke or transient ischaemic attacks. Electrocardiographic variables including p-wave terminal force (PWTF), corrected QT interval (QTc), and genetic variables including single nucleotide polymorphisms (SNPs) at the 4q25 (rs2200733) were evaluated. Clinical, electrocardiographic and genetic variables of patients without AF and those who developed AF were compared. Multiple logistic regression analysis and receiver operating characteristics were performed to identify parameters and determine their ability to predict the occurrence of AF. Results: Out of 709 patients (median age of 59 years, inter-quartile range 52–67) recruited, sixty (8.5%) were found to develop AF on follow-up. Age (odds ratio [OR]): 3.49, 95% confidence interval [CI]: 2.03–5.98, p < 0.0001), hypertension (OR: 2.76, 95% CI: 1.36–5.63, p = 0.0052), and valvular heart disease (OR: 8.49, 95% CI: 2.62–27.6, p < 0.004) were the strongest predictors of AF, with an area under receiver operating value of 0.76 (95% CI: 0.70–0.82), and 0.82 (95% CI: 0.77–0.87) when electrocardiographic variables (PWTF and QTc) were added. SNP did not improve prediction modelling. Conclusion: We demonstrated that a model combining clinical and electrocardiographic variables provided robust prediction of AF in our post-stroke population. Role of SNP in prediction of AF was limited.
Phycoremediation of crude oil polluted water from selected water sources in Ogoniland, Rivers State, Nigeria
Crude oil exploitation in the Niger Delta, particularly in Ogoniland, brought environmental devastation occasioned by petroleum pollution, as farmlands and water sources were destroyed. This study was designed to remediate crude oil contaminated water obtained from water sources in Ogoniland using two green algal species. Thirty water samples were collected from eight different water sources. The samples were analysed for total petroleum hydrocarbon (TPH) using gas chromatography/flame ionization detector (GC/FID). Algal samples were collected from Ogba River and at wetland in Military Hospital Benin, Edo State, Nigeria. The algal samples were identified, screened, optimized and grown in Bold basal medium. Results obtained from the determination of TPH showed that the infiltrated pond (Exc) sample site had the highest concentration among all the sites sampled with 198.8329 μg/L, R 2 with 134.1296 μg/L, R 1 with 108.9394 μg/L, R 3 with 105.8011 μg/L, R 4 with 98.442 8 μg/L, the hand-dug wells (Wll) had 9.6586 μg/L while the borehole (Bhl) had the lowest with 1.8310 μg/L. It was deduced that pollution of water sources was principally because of pollutants washed from the soil environment into the open surface water sources via run-off rather than through the seepage from the underground aquifers, incriminating illegal oil mining and artisanal refining. Results obtained from the analysis of algal growth medium indicated that the two algal species were able to absorb the hydrocarbon contaminants, albeit at different rates, corresponding with the algal growth rate. Analysis of algal biomass after 4 weeks of remediation showed that from the initial 10.27 μg/20 mL added to the growth medium, the highest TPH mean value of 0.490 μg/20 mL was extracted from Ulothrix zonata (F.Weber & Mohr) Kützing biomass grown in Exc compared to 0.344 μg/20 mL of TPH extracted from Chlorella sorokiniana Shihira & R.W.Krauss grown in the same sample site. Also, Ulothrix zonata had higher TPH yield 0.023 μg/20 mL in Bhl compared to Chlorella sorokiniana 0.021 μg/20 mL of TPH from the same water source. This result indicated Ulothrix zonata had superior TPH phycoremediation ability to Chlorella sorokiniana . While the present study calls for deployment of the algal species for field trial, it is strongly recommended that crude oil pollution should be discouraged.