Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
101 result(s) for "Jernej Jakše"
Sort by:
Evolutionarily New Solanaceous DCL2 Family Members Acquire Functions in Tomato
RNA silencing is one of the major defence activities against viral pathogens in plants. Silencing signals are initiated by Dicer‐like proteins (DCLs) to generate viral‐derived small RNAs (sRNAs). Viral sRNAs are then loaded into Argonaute proteins to form an RNA‐induced silencing complex to guide cleavage of target RNAs based on sequence homology. While the model regarding RNA silencing‐mediated defence against viral pathogens is largely established based on extensive studies using the model plant Arabidopsis thaliana, there are diverse sets of silencing components in other plants, especially in domesticated crops. Here, we tracked the expansion of solanaceous‐specific DCL2 genes during the course of evolution. We found that the DCL2a gene in tomato chromosome 6 is likely an evolutionarily new gene copy. We also found that DCL2b is more prone to be induced by viral pathogens in tomato plants, which is dependent on the combinations of cultivar and viral pathogen. Both DCL2a and DCL2b are critical to suppress the accumulation titre of a subviral agent, potato spindle tuber viroid (PSTVd). We noticed an unusually high accumulation of viral sRNAs shorter than 20 nt (16‐ to 19‐nt in length) in viroid‐infected tomato cv. Heinz 1706. Using synthetic small interfering RNAs, we demonstrated that shorter size sRNAs may also play a role in suppressing target RNAs, which can be interfered with by a viral suppressor of silencing, P19. Altogether, we provided further insights into the expansion of functional DCL2 family members in the Solanaceae family and their roles in combating viral and subviral agents. This work demonstrated the expansion of functional Dicer‐like 2 gene family members in the Solanaceae family.
The effect of phytosulfokine alpha on haploid embryogenesis and gene expression of Brassica napus microspore cultures
Microspore embryogenesis (ME) is the most powerful tool for creating homozygous lines in plant breeding and molecular biology research. It is still based mainly on the reprogramming of microspores by temperature, osmotic and/or nutrient stress. New compounds are being sought that could increase the efficiency of microspore embryogenesis or even induce the formation of haploid embryos from recalcitrant genotypes. Among these, the mitogenic factor phytosulfokine alpha (PSK-α) is promising due to its broad spectrum of activity in vivo and in vitro . The aim of our study was to investigate the effect of PSK-α on haploid embryogenesis from microspores of oilseed rape ( Brassica napus L., DH4079), one of the most important oil crops and a model plant for studying the molecular mechanisms controlling embryo formation. We tested different concentrations (0, 0.01, 0.1 and 1 µM) of the peptide and evaluated its effect on microspore viability and embryo regeneration after four weeks of culture. Our results showed a positive correlation between addition of PSK-α and cultured microspore viability and a positive effect also on the number of developed embryos. The analysis of transcriptomes across three time points (day 0, 2 and 4) with or without PSK-α supplementation (15 RNA libraries in total) unveiled differentially expressed genes pivotal in cell division, microspore embryogenesis, and subsequent regeneration. PCA grouped transcriptomes by RNA sampling time, with the first two principal components explaining 56.8% variability. On day 2 with PSK, 45 genes (15 up- and 30 down-regulated) were differentially expressed when PSK-α was added and their number increased to 304 by day 4 (30 up- and 274 down-regulated). PSK , PSKR , and PSI gene expression analysis revealed dynamic patterns, with PSK2 displaying the highest increase and overall expression during microspore culture at days 2 and 4. Despite some variations, only PSK1 showed significant differential expression upon PSK-α addition. Of 16 ME-related molecular markers, 3 and 15 exhibited significant differential expression in PSK-supplemented cultures at days 2 and 4, respectively. Embryo-specific markers predominantly expressed after 4 days of culture, with higher expression in medium without PSK, while on day 0, numerous sporophyte-specific markers were highly expressed.
Development of hop transcriptome to support research into host-viroid interactions
Viroids, the smallest known pathogens, unable to encode any proteins, can cause severe diseases in their host plants. One of the proposed mechanisms of their pathogenicity includes silencing the host's genes via viroid-derived small RNAs, which are products of the host's immune response to the viroid's double stranded RNA. Humulus lupulus (hop) plants are hosts to several viroids; two of them, HLVd and CBCVd, are interesting models for studying host-viroid interactions, due to the symptomless infection of the former and severe stunting disease caused by the latter. To study these interactions, we constructed a deep hop NGS transcriptome based on 35 Gb paired-end sequencing data assembled into over 74 Mb of contigs. These transcripts were used for in-silico prediction of target transcripts of vd-sRNA of the two aforementioned viroids, using two different software tools. Prediction models revealed that 1062 and 1387 hop transcripts share nucleotide similarities with HLVd- and CBCVd-derived small RNAs, respectively, so they could be silenced in an RNA interference process. Furthermore, we selected 17 transcripts from 4 groups of targets involved in the metabolism of plant hormones, small RNA biogenesis, transcripts with high complementarity with viroid-derived small RNAs and transcripts targeted by CBCVd-derived small RNAs with high cellular concentrations. Their expression was monitored by reverse transcription quantitative PCR performed using leaf, flower and cone samples. Additionally, the expression of 5 pathogenesis related genes was monitored. Expression analysis confirmed high expression levels of four pathogenesis related genes in leaves of HLVd and CBCVd infected hop plants. Expression fluctuations were observed for the majority of targets, with possible evidence of downregulation of GATA transcription factor by CBCVd- and of linoleate 13S-lipoxygenase by HLVd-derived small RNAs. These results provide a deep transcriptome of hop and the first insights into complex viroid-hop plant interactions.
Global transcriptome profiling and functional analysis reveal that tissue-specific constitutive overexpression of cytochrome P450s confers tolerance to imidacloprid in palm weevils in date palm fields
Background Cytochrome P450-dependent monooxygenases (P450s), constituting one of the largest and oldest gene superfamilies found in many organisms from bacteria to humans, play a vital role in the detoxification and inactivation of endogenous toxic compounds. The use of various insecticides has increased over the last two decades, and insects have developed resistance to most of these compounds through the detoxifying function of P450s. In this study, we focused on the red palm weevil (RPW), Rhynchophorus ferrugineus, the most devastating pest of palm trees worldwide, and demonstrated through functional analysis that upregulation of P450 gene expression has evolved as an adaptation to insecticide stress arising from exposure to the neonicotinoid-class systematic insecticide imidacloprid. Results Based on the RPW global transcriptome analysis, we identified 101 putative P450 genes, including 77 likely encoding protein coding genes with ubiquitous expression. A phylogenetic analysis revealed extensive functional and species-specific diversification of RPW P450s, indicating that multiple CYPs actively participated in the detoxification process. We identified highly conserved paralogs of insect P450s that likely play a role in the development of resistance to imidacloprid: Drosophila Cyp6g1 ( CYP6345J1 ) and Bemisia tabaci CYP4C64 ( CYP4LE1 ). We performed a toxicity bioassay and evaluated the induction of P450s, followed by the identification of overexpressed P450s, including CYP9Z82 , CYP6fra5, CYP6NR1 , CYP6345J1 and CYP4BD4 , which confer cross-resistance to imidacloprid. In addition, under imidacloprid insecticide stress in a date palm field, we observed increased expression of various P450 genes, with CYP9Z82 , CYP4BD4, CYP6NR1 and CYP6345J1 being the most upregulated detoxification genes in RPWs. Expression profiling and cluster analysis revealed P450 genes with multiple patterns of induction and differential expression. Furthermore, we used RNA interference to knock down the overexpressed P450s, after which a toxicity bioassay and quantitative expression analysis revealed likely candidates involved in metabolic resistance against imidacloprid in RPW. Ingestion of double-stranded RNA (dsRNA) successfully knocked down the expression of CYP9Z82, CYP6NR1 and CYP345J1 and demonstrated that silencing of CYP345J1 and CYP6NR1 significantly decreased the survival rate of adult RPWs treated with imidacloprid, indicating that overexpression of these two P450s may play an important role in developing tolerance to imidacloprid in a date palm field. Conclusion Our study provides useful background information on imidacloprid-specific induction and overexpression of P450s, which may enable the development of diagnostic tools/markers for monitoring the spread of insecticide resistant RPWs. The observed trend of increasing tolerance to imidacloprid in the date palm field therefore indicated that strategies for resistance management are urgently needed.
Chloroplast Genome Annotation Tools: Prolegomena to the Identification of Inverted Repeats
The development of next-generation sequencing technology and the increasing amount of sequencing data have brought the bioinformatic tools used in genome assembly into focus. The final step of the process is genome annotation, which works on assembled genome sequences to identify the location of genome features. In the case of organelle genomes, specialized annotation tools are used to identify organelle genes and structural features. Numerous annotation tools target chloroplast sequences. Most chloroplast DNA genomes have a quadripartite structure caused by two copies of a large inverted repeat. We investigated the strategies of six annotation tools (Chloë, Chloroplot, GeSeq, ORG.Annotate, PGA, Plann) for identifying inverted repeats and analyzed their success using publicly available complete chloroplast sequences of taxa belonging to the asterid and rosid clades. The annotation tools use two different approaches to identify inverted repeats, using existing general search tools or implementing stand-alone solutions. The chloroplast sequences studied show that there are different types of imperfections in the assembled data and that each tool performs better on some sequences than the others.
Revisiting the Role of Transcription Factors in Coordinating the Defense Response Against Citrus Bark Cracking Viroid Infection in Commercial Hop (Humulus Lupulus L.)
Transcription factors (TFs) play a major role in controlling gene expression by intricately regulating diverse biological processes such as growth and development, the response to external stimuli and the activation of defense responses. The systematic identification and classification of TF genes are essential to gain insight into their evolutionary history, biological roles, and regulatory networks. In this study, we performed a global mining and characterization of hop TFs and their involvement in Citrus bark cracking viroid CBCVd infection by employing a digital gene expression analysis. Our systematic analysis resulted in the identification of a total of 3,818 putative hop TFs that were classified into 99 families based on their conserved domains. A phylogenetic analysis classified the hop TFs into several subgroups based on a phylogenetic comparison with reference TF proteins from Arabidopsis thaliana providing glimpses of their evolutionary history. Members of the same subfamily and subgroup shared conserved motif compositions. The putative functions of the CBCVd-responsive hop TFs were predicted using their orthologous counterparts in A. thaliana. The analysis of the expression profiling of the CBCVd-responsive hop TFs revealed a massive differential modulation, and the expression of the selected TFs was validated using qRT-PCR. Together, the comprehensive integrated analysis in this study provides better insights into the TF regulatory networks associated with CBCVd infections in the hop, and also offers candidate TF genes for improving the resistance in hop against viroids.
Genetic Structure and Core Collection of Olive Germplasm from Albania Revealed by Microsatellite Markers
Olive is considered one of the oldest and the most important cultivated fruit trees in Albania. In the present study, the genetic diversity and structure of Albanian olive germplasm is represented by a set of 194 olive genotypes collected in-situ in their natural ecosystems and in the ex-situ collection. The study was conducted using 26 microsatellite markers (14 genomic SSR and 12 Expressed Sequence Tag microsatellites). The identity analysis revealed 183 unique genotypes. Genetic distance-based and model-based Bayesian analyses were used to investigate the genetic diversity, relatedness, and the partitioning of the genetic variability among the Albanian olive germplasm. The genetic distance-based analysis grouped olives into 12 clusters, with an average similarity of 50.9%. Albanian native olives clustered in one main group separated from introduced foreign cultivars, which was also supported by Principal Coordinate Analysis (PCoA) and model-based methods. A core collection of 57 genotypes representing all allelic richness found in Albanian germplasm was developed for the first time. Herein, we report the first extended genetic characterization and structure of olive germplasm in Albania. The findings suggest that Albanian olive germplasm is a unique gene pool and provides an interesting genetic basis for breeding programs.
Comprehensive analysis of Verticillium nonalfalfae in silico secretome uncovers putative effector proteins expressed during hop invasion
The vascular plant pathogen Verticillium nonalfalfae causes Verticillium wilt in several important crops. VnaSSP4.2 was recently discovered as a V. nonalfalfae virulence effector protein in the xylem sap of infected hop. Here, we expanded our search for candidate secreted effector proteins (CSEPs) in the V. nonalfalfae predicted secretome using a bioinformatic pipeline built on V. nonalfalfae genome data, RNA-Seq and proteomic studies of the interaction with hop. The secretome, rich in carbohydrate active enzymes, proteases, redox proteins and proteins involved in secondary metabolism, cellular processing and signaling, includes 263 CSEPs. Several homologs of known fungal effectors (LysM, NLPs, Hce2, Cerato-platanins, Cyanovirin-N lectins, hydrophobins and CFEM domain containing proteins) and avirulence determinants in the PHI database (Avr-Pita1 and MgSM1) were found. The majority of CSEPs were non-annotated and were narrowed down to 44 top priority candidates based on their likelihood of being effectors. These were examined by spatio-temporal gene expression profiling of infected hop. Among the highest in planta expressed CSEPs, five deletion mutants were tested in pathogenicity assays. A deletion mutant of VnaUn.279, a lethal pathotype specific gene with sequence similarity to SAM-dependent methyltransferase (LaeA), had lower infectivity and showed highly reduced virulence, but no changes in morphology, fungal growth or conidiation were observed. Several putative secreted effector proteins that probably contribute to V. nonalfalfae colonization of hop were identified in this study. Among them, LaeA gene homolog was found to act as a potential novel virulence effector of V. nonalfalfae. The combined results will serve for future characterization of V. nonalfalfae effectors, which will advance our understanding of Verticillium wilt disease.
RNA interference core components identified and characterised in Verticillium nonalfalfae, a vascular wilt pathogenic plant fungi of hops
The conserved RNA interference mechanism (RNAi) in the fungal kingdom has become a focus of intense scientific investigation. The three catalytic core components, Dicer-like (DCL), Argonaute (AGO), and RNA-dependent RNA polymerase (RdRP), and their associated small interfering RNA molecules (siRNAs) have been identified and characterised in several fungal species. Recent studies have proposed that RNAi is a major contributor to the virulence of fungal pathogens as a result of so-called trans-kingdom RNA silencing. In the present study, we report on the existence of three core RNAi proteins in the pathogenic plant fungus Verticillium nonalfalfae , which is a soilborne plant pathogen that causes severe wilting disease in hops ( Humulus lupulus L.). Two DCL proteins, two AGO proteins, and two RdRP proteins were identified, and their conserved RNAi domains were characterised. Our phylogeny results confirm the existing taxonomic relationships in the Ascomycete fungal phylum and show that the fungi of the Hypocreomycetidae subclass of the Sordariomycetes class have high amino acid sequence similarity. The expression analysis revealed a potential role of RNAi in the pathogenicity of the fungi, since all the RNAi genes were highly upregulated in the highly virulent isolate T2 and were also differentially expressed in the V. nonalfalfae -susceptible Celeia and V. nonalfalfae -resistant Wye Target cultivars.
Genome-Wide Identification and Expression Profiling of Glycosidases, Lipases, and Proteases from Invasive Asian Palm Weevil, Rhynchophorus ferrugineus
The red palm weevil, Rhynchophorus ferrugineus, is a destructive, invasive pest to a diverse range of palm plantations globally. Commonly used broad-range chemical insecticides for insect control pose high risks to non-target organisms, humans, and the environment. A bio-rational approach of screening natural small-molecule inhibitors that specifically target R. ferrugineus proteins critical to its life processes can pave the way for developing novel bioinsecticides. Digestive enzymes (DEs), which impair feeding on plants (herbivory), are promising targets. We generated de novo transcriptomes, annotated DE-related genes from the R. ferrugineus gut and abdomen, manually annotated the DE gene family from the recently available genome and our transcriptome data, and reported 34 glycosidases, 85 lipases, and 201 proteases. We identified several tandem duplicates and allelic variants from the lipase and protease families, notably, 10 RferLip and 21 RferPro alleles, which emerged primarily through indels and single-site substitution. These alleles may confer enhanced digestive lipolysis and proteolysis. Phylogenetic analyses identified and classified different subfamilies of DEs and revealed close evolutionary relationships with other coleopterans. We assessed select candidate DEs’ activity and the potential for inhibition in silico to better understand the herbivory arsenal. In silico analysis revealed that the selected enzymes exhibited similar ligand-binding affinity to their corresponding substrate, except for protease aminopeptidase N, RferPro40, which exhibited poorer affinity to the inhibitor bestatin. Overall, our study serves as a foundation for further functional analysis and offers a novel target for the development of a novel bio-rational insecticide for R. ferrugineus.