Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
78 result(s) for "Jha, Debesh"
Sort by:
HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy
Artificial intelligence is currently a hot topic in medicine. However, medical data is often sparse and hard to obtain due to legal restrictions and lack of medical personnel for the cumbersome and tedious process to manually label training data. These constraints make it difficult to develop systems for automatic analysis, like detecting disease or other lesions. In this respect, this article presents HyperKvasir, the largest image and video dataset of the gastrointestinal tract available today. The data is collected during real gastro- and colonoscopy examinations at Bærum Hospital in Norway and partly labeled by experienced gastrointestinal endoscopists. The dataset contains 110,079 images and 374 videos, and represents anatomical landmarks as well as pathological and normal findings. The total number of images and video frames together is around 1 million. Initial experiments demonstrate the potential benefits of artificial intelligence-based computer-assisted diagnosis systems. The HyperKvasir dataset can play a valuable role in developing better algorithms and computer-assisted examination systems not only for gastro- and colonoscopy, but also for other fields in medicine.Measurement(s)lumen of digestive tract • lumen of colonTechnology Type(s)Gastrointestinal Endoscopy • ColonoscopySample Characteristic - OrganismHomo sapiensMachine-accessible metadata file describing the reported data: 10.6084/m9.figshare.12759833
A multi-centre polyp detection and segmentation dataset for generalisability assessment
Polyps in the colon are widely known cancer precursors identified by colonoscopy. Whilst most polyps are benign, the polyp’s number, size and surface structure are linked to the risk of colon cancer. Several methods have been developed to automate polyp detection and segmentation. However, the main issue is that they are not tested rigorously on a large multicentre purpose-built dataset, one reason being the lack of a comprehensive public dataset. As a result, the developed methods may not generalise to different population datasets. To this extent, we have curated a dataset from six unique centres incorporating more than 300 patients. The dataset includes both single frame and sequence data with 3762 annotated polyp labels with precise delineation of polyp boundaries verified by six senior gastroenterologists. To our knowledge, this is the most comprehensive detection and pixel-level segmentation dataset (referred to as PolypGen ) curated by a team of computational scientists and expert gastroenterologists. The paper provides insight into data construction and annotation strategies, quality assurance, and technical validation.
Kvasir-Capsule, a video capsule endoscopy dataset
Artificial intelligence (AI) is predicted to have profound effects on the future of video capsule endoscopy (VCE) technology. The potential lies in improving anomaly detection while reducing manual labour. Existing work demonstrates the promising benefits of AI-based computer-assisted diagnosis systems for VCE. They also show great potential for improvements to achieve even better results. Also, medical data is often sparse and unavailable to the research community, and qualified medical personnel rarely have time for the tedious labelling work. We present Kvasir-Capsule , a large VCE dataset collected from examinations at a Norwegian Hospital. Kvasir-Capsule consists of 117 videos which can be used to extract a total of 4,741,504 image frames. We have labelled and medically verified 47,238 frames with a bounding box around findings from 14 different classes. In addition to these labelled images, there are 4,694,266 unlabelled frames included in the dataset. The Kvasir-Capsule dataset can play a valuable role in developing better algorithms in order to reach true potential of VCE technology. Measurement(s) Gastrointestinal Tract • gastrointestinal system disease Technology Type(s) Capsule Endoscope • visual assessment of in vivo video recording Sample Characteristic - Organism Homo sapiens Sample Characteristic - Environment alimentary part of gastrointestinal system Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.14178905
Assessing generalisability of deep learning-based polyp detection and segmentation methods through a computer vision challenge
Polyps are well-known cancer precursors identified by colonoscopy. However, variability in their size, appearance, and location makes the detection of polyps challenging. Moreover, colonoscopy surveillance and removal of polyps are highly operator-dependent procedures and occur in a highly complex organ topology. There exists a high missed detection rate and incomplete removal of colonic polyps. To assist in clinical procedures and reduce missed rates, automated methods for detecting and segmenting polyps using machine learning have been achieved in past years. However, the major drawback in most of these methods is their ability to generalise to out-of-sample unseen datasets from different centres, populations, modalities, and acquisition systems. To test this hypothesis rigorously, we, together with expert gastroenterologists, curated a multi-centre and multi-population dataset acquired from six different colonoscopy systems and challenged the computational expert teams to develop robust automated detection and segmentation methods in a crowd-sourcing Endoscopic computer vision challenge. This work put forward rigorous generalisability tests and assesses the usability of devised deep learning methods in dynamic and actual clinical colonoscopy procedures. We analyse the results of four top performing teams for the detection task and five top performing teams for the segmentation task. Our analyses demonstrate that the top-ranking teams concentrated mainly on accuracy over the real-time performance required for clinical applicability. We further dissect the devised methods and provide an experiment-based hypothesis that reveals the need for improved generalisability to tackle diversity present in multi-centre datasets and routine clinical procedures.
A Conceptual Framework for Applying Ethical Principles of AI to Medical Practice
Artificial Intelligence (AI) is reshaping healthcare through advancements in clinical decision support and diagnostic capabilities. While human expertise remains foundational to medical practice, AI-powered tools are increasingly matching or exceeding specialist-level performance across multiple domains, paving the way for a new era of democratized healthcare access. These systems promise to reduce disparities in care delivery across demographic, racial, and socioeconomic boundaries by providing high-quality diagnostic support at scale. As a result, advanced healthcare services can be affordable to all populations, irrespective of demographics, race, or socioeconomic background. The democratization of such AI tools can reduce the cost of care, optimize resource allocation, and improve the quality of care. In contrast to humans, AI can potentially uncover complex relationships in the data from a large set of inputs and generate new evidence-based knowledge in medicine. However, integrating AI into healthcare raises several ethical and philosophical concerns, such as bias, transparency, autonomy, responsibility, and accountability. In this study, we examine recent advances in AI-enabled medical image analysis, current regulatory frameworks, and emerging best practices for clinical integration. We analyze both technical and ethical challenges inherent in deploying AI systems across healthcare institutions, with particular attention to data privacy, algorithmic fairness, and system transparency. Furthermore, we propose practical solutions to address key challenges, including data scarcity, racial bias in training datasets, limited model interpretability, and systematic algorithmic biases. Finally, we outline a conceptual algorithm for responsible AI implementations and identify promising future research and development directions.
Large Scale MRI Collection and Segmentation of Cirrhotic Liver
Liver cirrhosis represents the end stage of chronic liver disease, characterized by extensive fibrosis and nodular regeneration that significantly increases mortality risk. While magnetic resonance imaging (MRI) offers a non-invasive assessment, accurately segmenting cirrhotic livers presents substantial challenges due to morphological alterations and heterogeneous signal characteristics. Deep learning approaches show promise for automating these tasks, but progress has been limited by the absence of large-scale, annotated datasets. Here, we present CirrMRI600+, the first comprehensive dataset comprising 628 high-resolution abdominal MRI scans (310 T1-weighted and 318 T2-weighted sequences, totaling nearly 40,000 annotated slices) with expert-validated segmentation labels for cirrhotic livers. The dataset includes demographic information, clinical parameters, and histopathological validation where available. Additionally, we provide benchmark results from 11 state-of-the-art deep learning experiments to establish performance standards. CirrMRI600+ enables the development and validation of advanced computational methods for cirrhotic liver analysis, potentially accelerating progress toward automated Cirrhosis visual staging and personalized treatment planning.
Ethical framework for responsible foundational models in medical imaging
The emergence of foundational models represents a paradigm shift in medical imaging, offering extraordinary capabilities in disease detection, diagnosis, and treatment planning. These large-scale artificial intelligence systems, trained on extensive multimodal and multi-center datasets, demonstrate remarkable versatility across diverse medical applications. However, their integration into clinical practice presents complex ethical challenges that extend beyond technical performance metrics. This study examines the critical ethical considerations at the intersection of healthcare and artificial intelligence. Patient data privacy remains a fundamental concern, particularly given these models' requirement for extensive training data and their potential to inadvertently memorize sensitive information. Algorithmic bias poses a significant challenge in healthcare, as historical disparities in medical data collection may perpetuate or exacerbate existing healthcare inequities across demographic groups. The complexity of foundational models presents significant challenges regarding transparency and explainability in medical decision-making. We propose a comprehensive ethical framework that addresses these challenges while promoting responsible innovation. This framework emphasizes robust privacy safeguards, systematic bias detection and mitigation strategies, and mechanisms for maintaining meaningful human oversight. By establishing clear guidelines for development and deployment, we aim to harness the transformative potential of foundational models while preserving the fundamental principles of medical ethics and patient-centered care.
Pathological Brain Detection Using Weiner Filtering, 2D-Discrete Wavelet Transform, Probabilistic PCA, and Random Subspace Ensemble Classifier
Accurate diagnosis of pathological brain images is important for patient care, particularly in the early phase of the disease. Although numerous studies have used machine-learning techniques for the computer-aided diagnosis (CAD) of pathological brain, previous methods encountered challenges in terms of the diagnostic efficiency owing to deficiencies in the choice of proper filtering techniques, neuroimaging biomarkers, and limited learning models. Magnetic resonance imaging (MRI) is capable of providing enhanced information regarding the soft tissues, and therefore MR images are included in the proposed approach. In this study, we propose a new model that includes Wiener filtering for noise reduction, 2D-discrete wavelet transform (2D-DWT) for feature extraction, probabilistic principal component analysis (PPCA) for dimensionality reduction, and a random subspace ensemble (RSE) classifier along with the K-nearest neighbors (KNN) algorithm as a base classifier to classify brain images as pathological or normal ones. The proposed methods provide a significant improvement in classification results when compared to other studies. Based on 5×5 cross-validation (CV), the proposed method outperforms 21 state-of-the-art algorithms in terms of classification accuracy, sensitivity, and specificity for all four datasets used in the study.
nmPLS-Net: Segmenting Pulmonary Lobes Using nmODE
Pulmonary lobe segmentation is vital for clinical diagnosis and treatment. Deep neural network-based pulmonary lobe segmentation methods have seen rapid development. However, there are challenges that remain, e.g., pulmonary fissures are always not clear or incomplete, especially in the complex situation of the trilobed right pulmonary, which leads to relatively poor results. To address this issue, this study proposes a novel method, called nmPLS-Net, to segment pulmonary lobes effectively using nmODE. Benefiting from its nonlinear and memory capacity, we construct an encoding network based on nmODE to extract features of the entire lung and dependencies between features. Then, we build a decoding network based on edge segmentation, which segments pulmonary lobes and focuses on effectively detecting pulmonary fissures. The experimental results on two datasets demonstrate that the proposed method achieves accurate pulmonary lobe segmentation.
RETHINKING INTERMEDIATE LAYERS DESIGN IN KNOWLEDGE DISTILLATION FOR KIDNEY AND LIVER TUMOR SEGMENTATION
Knowledge distillation (KD) has demonstrated remarkable success across various domains, but its application to medical imaging tasks, such as kidney and liver tumor segmentation, has encountered challenges. Many existing KD methods are not specifically tailored for these tasks. Moreover, prevalent KD methods often lack a careful consideration of 'what' and 'from where' to distill knowledge from the teacher to the student. This oversight may lead to issues like the accumulation of training bias within shallower student layers, potentially compromising the effectiveness of KD. To address these challenges, we propose Hierarchical Layer-selective Feedback Distillation (HLFD). HLFD strategically distills knowledge from a combination of middle layers to earlier layers and transfers final layer knowledge to intermediate layers at both the feature and pixel levels. This design allows the model to learn higher-quality representations from earlier layers, resulting in a robust and compact student model. Extensive quantitative evaluations reveal that HLFD outperforms existing methods by a significant margin. For example, in the kidney segmentation task, HLFD surpasses the student model (without KD) by over 10%, significantly improving its focus on tumor-specific features. From a qualitative standpoint, the student model trained using HLFD excels at suppressing irrelevant information and can focus sharply on tumor-specific details, which opens a new pathway for more efficient and accurate diagnostic tools. Code is available here.