Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5,343
result(s) for
"Jia, Long"
Sort by:
Auxin inhibits lignin and cellulose biosynthesis in stone cells of pear fruit via the PbrARF13‐PbrNSC‐PbrMYB132 transcriptional regulatory cascade
by
Yao, Jia‐Long
,
Mao, Zhiquan
,
Wu, Jun
in
Arabidopsis
,
Arabidopsis - genetics
,
Arabidopsis - metabolism
2023
Summary Stone cells are often present in pear fruit, and they can seriously affect the fruit quality when present in large numbers. The plant growth regulator NAA, a synthetic auxin, is known to play an active role in fruit development regulation. However, the genetic mechanisms of NAA regulation of stone cell formation are still unclear. Here, we demonstrated that exogenous application of 200 μM NAA reduced stone cell content and also significantly decreased the expression level of PbrNSC encoding a transcriptional regulator. PbrNSC was shown to bind to an auxin response factor, PbrARF13. Overexpression of PbrARF13 decreased stone cell content in pear fruit and secondary cell wall (SCW) thickness in transgenic Arabidopsis plants. In contrast, knocking down PbrARF13 expression using virus‐induced gene silencing had the opposite effect. PbrARF13 was subsequently shown to inhibit PbrNSC expression by directly binding to its promoter, and further to reduce stone cell content. Furthermore, PbrNSC was identified as a positive regulator of PbrMYB132 through analyses of co‐expression network of stone cell formation‐related genes. PbrMYB132 activated the expression of gene encoding cellulose synthase (PbrCESA4b/7a/8a) and lignin laccase (PbrLAC5) binding to their promotors. As expected, overexpression or knockdown of PbrMYB132 increased or decreased stone cell content in pear fruit and SCW thickness in Arabidopsis transgenic plants. In conclusion, our study shows that the ‘PbrARF13‐PbrNSC‐PbrMYB132’ regulatory cascade mediates the biosynthesis of lignin and cellulose in stone cells of pear fruit in response to auxin signals and also provides new insights into plant SCW formation.
Journal Article
An integrated peach genome structural variation map uncovers genes associated with fruit traits
by
Cao, Ke
,
Chen, Changwen
,
Guo, Wenwu
in
Accuracy
,
Animal Genetics and Genomics
,
Anthocyanins - metabolism
2020
Background
Genome structural variations (SVs) have been associated with key traits in a wide range of agronomically important species; however, SV profiles of peach and their functional impacts remain largely unexplored.
Results
Here, we present an integrated map of 202,273 SVs from 336 peach genomes. A substantial number of SVs have been selected during peach domestication and improvement, which together affect 2268 genes. Genome-wide association studies of 26 agronomic traits using these SVs identify a number of candidate causal variants. A 9-bp insertion in
Prupe.4G186800
, which encodes a NAC transcription factor, is shown to be associated with early fruit maturity, and a 487-bp deletion in the promoter of
PpMYB10.1
is associated with flesh color around the stone. In addition, a 1.67 Mb inversion is highly associated with fruit shape, and a gene adjacent to the inversion breakpoint,
PpOFP1
, regulates flat shape formation.
Conclusions
The integrated peach SV map and the identified candidate genes and variants represent valuable resources for future genomic research and breeding in peach.
Journal Article
Applications, phytochemistry, pharmacological effects, pharmacokinetics, toxicity of Scutellaria baicalensis Georgi. and its probably potential therapeutic effects on COVID-19: a review
2020
Scutellaria baicalensis
Georgi. (SB) is a common heat-clearing medicine in traditional Chinese medicine (TCM). It has been used for thousands of years in China and its neighboring countries. Clinically, it is mostly used to treat diseases such as cold and cough. SB has different harvesting periods and processed products for different clinical symptoms. Botanical researches proved that SB included in the Chinese Pharmacopoeia (1st, 2020) was consistent with the medicinal SB described in ancient books. Modern phytochemical analysis had found that SB contains hundreds of active ingredients, of which flavonoids are its major components. These chemical components are the material basis for SB to exert pharmacological effects. Pharmacological studies had shown that SB has a wide range of pharmacological activities such as antiinflammatory, antibacterial, antiviral, anticancer, liver protection, etc. The active ingredients of SB were mostly distributed in liver and kidney, and couldn't be absorbed into brain via oral absorption. SB’s toxicity was mostly manifested in liver fibrosis and allergic reactions, mainly caused by baicalin. The non-medicinal application prospects of SB were broad, such as antibacterial plastics, UV-resistant silk, animal feed, etc. In response to the Coronavirus Disease In 2019 (COVID-19), based on the network pharmacology research, SB’s active ingredients may have potential therapeutic effects, such as baicalin and baicalein. Therefore, the exact therapeutic effects are still need to be determined in clinical trials. SB has been reviewed in the past 2 years, but the content of these articles were not comprehensive and accurate. In view of the above, we made a comprehensive overview of the research progress of SB, and expect to provide ideas for the follow-up study of SB.
Journal Article
Optimization of traction parameters for lumbar scoliosis
2024
Background
Scoliosis is a high incidence disease that endangers the physical and mental health of adolescents. Traction therapy, as a conservative treatment plan, is helpful to improve the recovery speed of patients by studying the influence of different traction factors on the therapeutic effect.
Methods
Based on the thin layer CT data of the lumbar spine of a 16-year-old patient with scoliosis, Mimics21.0 was used to extract the 3D digital model, and Geomagic Wrap2021 was used to perform the smooth surface. After that, SolidWorks was used to manually construct the structures, such as the intervertebral disc, and Ansys17.0 was used to add constraints, ligaments, and other features. Three-factor ANOVA was carried out after an orthogonal experiment that considered traction mode, traction angle, and traction force was finished.
Results
① A three-dimensional biomechanical model of lumbar scoliosis was created. ② The model’s correctness was confirmed by comparing it to the corpse and other finite element models, as well as by verifying it under a range of working settings. ③ Traction force (
P
= 0.000), traction angle (
P
= 0.000), the interaction between traction force and traction angle (
P
= 0.000), and the interaction between traction mode and traction angle (
P
= 0.045) were all significant. ④ The interaction between traction force and traction angle has the most significant effect on Cobb, and traction with a certain angle is better than traditional axial traction. ⑤ Traction mode is not significant, but the interaction between traction mode and traction angle is significant.
Conclusions
A certain angle of traction can aid in improving outcomes and the traction force can be suitably decreased in the clinical formulation of the traction plan. The uniformity of correcting effect is more favorable when higher fixation techniques like positive suspension or traction bed traction are used, as opposed to overhanging traction.
Journal Article
The IAA- and ABA-responsive transcription factor CgMYB58 upregulates lignin biosynthesis and triggers juice sac granulation in pummelo
by
Deng, Cecilia Hong
,
Chen, Jiajing
,
Shi, Meiyan
in
631/208/199
,
631/337/2019
,
631/337/572/2102
2020
In citrus, lignin overaccumulation in the juice sac results in granulation and an unpleasant fruit texture and taste. By integrating metabolic phenotyping and transcriptomic analyses, we found 702 differentially expressed genes (DEGs), including 24 transcription factors (TFs), to be significantly correlated with lignin content.
CgMYB58
was further identified as a critical R2R3 MYB TF involved in lignin overaccumulation owing to its high transcript levels in Huanong Red-fleshed pummelo (HR,
Citrus grandis
) fruits. Transient expression of
CgMYB58
led to an increase in the lignin content in the pummelo fruit mesocarp, whereas its stable overexpression significantly promoted lignin accumulation and upregulated 19 lignin biosynthetic genes. Among these genes,
CgPAL1
,
CgPAL2
,
Cg4CL1
, and
CgC3H
were directly modulated by CgMYB58 through interaction with their promoter regions. Moreover, we showed that juice sac granulation in pummelo fruits could be affected by indole-3-acetic acid (IAA) and abscisic acid (ABA) treatments. In HR pummelo, ABA significantly accelerated this granulation, whereas IAA effectively inhibited this process. Taken together, these results provide novel insight into the lignin accumulation mechanism in citrus fruits. We also revealed the theoretical basis via exogenous IAA application, which repressed the expression of
CgMYB58
and its target genes, thus alleviating juice sac granulation in orchards.
Journal Article
A systems genetics approach reveals PbrNSC as a regulator of lignin and cellulose biosynthesis in stone cells of pear fruit
by
Zhao, Kejiao
,
Lin, Tao
,
Sun, Manyi
in
Animal Genetics and Genomics
,
Arabidopsis
,
Arabidopsis - genetics
2021
Background
Stone cells in fruits of pear (
Pyrus pyrifolia
) negatively influence fruit quality because their lignified cell walls impart a coarse and granular texture to the fruit flesh.
Results
We generate RNA-seq data from the developing fruits of 206 pear cultivars with a wide range of stone cell contents and use a systems genetics approach to integrate co-expression networks and expression quantitative trait loci (eQTLs) to characterize the regulatory mechanisms controlling lignocellulose formation in the stone cells of pear fruits. Our data with a total of 35,897 expressed genes and 974,404 SNPs support the identification of seven stone cell formation modules and the detection of 139,515 eQTLs for 3229 genes in these modules. Focusing on regulatory factors and using a co-expression network comprising 39 structural genes, we identify PbrNSC as a candidate regulator of stone cell formation. We then verify the function of
PbrNSC
in regulating lignocellulose formation using both pear fruit and
Arabidopsis
plants and further show that PbrNSC can transcriptionally activate multiple target genes involved in secondary cell wall formation.
Conclusions
This study generates a large resource for studying stone cell formation and provides insights into gene regulatory networks controlling the formation of stone cell and lignocellulose.
Journal Article
Different roles of water in secondary organic aerosol formation from toluene and isoprene
2018
Roles of water in the formation of secondary organic aerosol (SOA) from the irradiations of toluene-NO2 and isoprene-NO2 were investigated in a smog chamber. Experimental results show that the yield of SOA from toluene almost doubled as relative humidity increased from 5 to 85 %, whereas the yield of SOA from isoprene under humid conditions decreased by 2.6 times as compared to that under dry conditions. The distinct difference of RH effects on SOA formation from toluene and isoprene is well explained with our experiments and model simulations. The increased SOA from humid toluene-NO2 irradiations is mainly contributed by O–H-containing products such as polyalcohols formed from aqueous reactions. The major chemical components of SOA in isoprene-NO2 irradiations are oligomers formed from the gas phase. SOA formation from isoprene-NO2 irradiations is controlled by stable Criegee intermediates (SCIs) that are greatly influenced by water. As a result, high RH can obstruct the oligomerization reaction of SCIs to form SOA.
Journal Article
Transposon insertions regulate genome‐wide allele‐specific expression and underpin flower colour variations in apple (Malus spp.)
by
Ampomah‐Dwamena, Charles
,
Wang, Dajiang
,
Luo, Zhiwei
in
Alleles
,
allele‐specific expression
,
Analysis
2022
Summary Allele‐specific expression (ASE) can lead to phenotypic diversity and evolution. However, the mechanisms regulating ASE are not well understood, particularly in woody perennial plants. In this study, we investigated ASE genes in the apple cultivar ‘Royal Gala’ (RG). A high quality chromosome‐level genome was assembled using a homozygous tetra‐haploid RG plant, derived from anther cultures. Using RNA‐sequencing (RNA‐seq) data from RG flower and fruit tissues, we identified 2091 ASE genes. Compared with the haploid genome of ‘Golden Delicious’ (GD), a parent of RG, we distinguished the genomic sequences between the two alleles of 817 ASE genes, and further identified allele‐specific presence of a transposable element (TE) in the upstream region of 354 ASE genes. These included MYB110a that encodes a transcription factor regulating anthocyanin biosynthesis. Interestingly, another ASE gene, MYB10 also showed an allele‐specific TE insertion and was identified using genome data of other apple cultivars. The presence of the TE insertion in both MYB genes was positively associated with ASE and anthocyanin accumulation in apple petals through analysis of 231 apple accessions, and thus underpins apple flower colour evolution. Our study demonstrated the importance of TEs in regulating ASE on a genome‐wide scale and presents a novel method for rapid identification of ASE genes and their regulatory elements in plants.
Journal Article
PbrmiR397a regulates lignification during stone cell development in pear fruit
2019
Summary Lignified stone cells substantially reduce fruit quality. Therefore, it is desirable to inhibit stone cell development using genetic technologies. However, the molecular mechanisms regulating lignification are poorly understood in fruit stone cells. In this study, we have shown that microRNA (miR) miR397a regulates fruit cell lignification by inhibiting laccase (LAC) genes that encode key lignin biosynthesis enzymes. Transient overexpression of PbrmiR397a, which is the miR397a of Chinese pear (Pyrus bretschneideri), and simultaneous silencing of three LAC genes reduced the lignin content and stone cell number in pear fruit. A single nucleotide polymorphism (SNP) identified in the promoter of the PbrmiR397a gene was found to associate with low levels of fruit lignin, after analysis of the genome sequences of sixty pear varieties. This SNP created a TCA element that responded to salicylic acid to induce gene expression as confirmed using a cell‐based assay system. Furthermore, stable overexpression of PbrmiR397a in transgenic tobacco plants reduced the expression of target LAC genes and decreased the content of lignin but did not change the ratio of syringyl‐ and guaiacyl‐lignin monomers. Consistent with reduction in lignin content, the transgenic plants showed fewer numbers of vessel elements and thinner secondary walls in the remaining elements compared to wild‐type control plants. This study has advanced our understanding of the regulation of lignin biosynthesis and provided useful molecular genetic information for improving pear fruit quality.
Journal Article
Secondary organic aerosol formation from OH-initiated oxidation of m -xylene: effects of relative humidity on yield and chemical composition
2019
The effect of relative humidity (RH) on secondary organic aerosol (SOA) formation from the photooxidation of m-xylene initiated by OH radicals in the absence of seed particles was investigated in a Teflon reactor. The SOA yields were determined based on the particle mass concentrations measured with a scanning mobility particle sizer (SMPS) and reacted m-xylene concentrations measured with a gas chromatograph–mass spectrometer (GC-MS). The SOA components were analyzed using a Fourier transform infrared (FTIR) spectrometer and an ultrahigh-performance liquid chromatograph–electrospray ionization–high-resolution mass spectrometer (UPLC-ESI-HRMS). A significant decrease was observed in SOA mass concentration and yield variation with the increasing RH conditions. The SOA yields are 14.0 %–16.5 % and 0.8 %–3.2 % at low RH (14 %) and high RH (74 %–79 %), respectively, with the difference being nearly 1 order of magnitude. Some of the reduction in the apparent yield may be due to the faster wall loss of semi-volatile products of oxidation at higher RH. The chemical mechanism for explaining the RH effects on SOA formation from m-xylene–OH system is proposed based on the analysis of both FTIR and HRMS measurements, and the Master Chemical Mechanism (MCM) prediction is used as the assistant. The FTIR analysis shows that the proportion of oligomers with C-O-C groups from carbonyl compounds in SOA at high RH is higher than that at low RH, but further information cannot be provided by the FTIR results to well explain the negative RH effect on SOA formation. In the HRMS spectra, it is found that C2H2O is one of the most frequent mass differences at low and high RHs, that the compounds with a lower carbon number in the formula at low RH account for a larger proportion than those at high RH and that the compounds at high RH have higher O : C ratios than those at low RH. The HRMS results suggest that the RH may suppress oligomerization where water is involved as a by-product and may influence the further particle-phase reaction of highly oxygenated organic molecules (HOMs) formed in the gas phase. In addition, the negative RH effect on SOA formation is enlarged based on the gas-to-particle partitioning rule.
Journal Article