Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
112 result(s) for "Jia, Shujun"
Sort by:
Effect of V Content and Heat Input on HAZ Softening of Deep-Sea Pipeline Steel
In this paper, the welding thermal cycle process of deep-sea pipeline steel was investigated by welding thermal simulation. The microstructure evolution, crystallology and second-phase precipitation behavior of the soft zone of the heat-affected zone (HAZ) were characterized and analyzed by combining scanning electron microscopy, electron back-scattered diffraction, transmission electron microscopy and hardness testing. The results show that HAZ softening appeared in the fine-grained zone with a peak temperature of 900–1000 °C for deep-sea pipeline steel, the base metal microstructure of which was the polygonal ferrite and acicular ferrite. Using V microalloying and low welding heat input could effectively decrease the softening of the HAZ fine-grained region, which was achieved by reducing the effective grain size, increasing the proportion of the dislocation substructures, and precipitating the nanoscale second-phase particles.
Effect of Temperature on Corrosion of HSLA Steels with Different Cr Contents in a Water-Saturated Supercritical CO2 Environment
This study investigates the effects of chromium (0.4~1.2) Cr content and temperature (35–80 °C) on the corrosion behavior and mechanisms of steels in a water-saturated supercritical CO2 (S-CO2) environment, aiming to provide theoretical foundations for material selection and corrosion management in S-CO2 pipeline systems. Results indicate that increasing Cr content promotes the formation of granular bainite as the dominant microstructure, accompanied by refined martensite–austenite (MA) constituents with increased population and reduced dimensions, leading to enhanced strength at the expense of toughness. In the S-CO2/H2O environment, Cr reacts with CO2 to form a dense Cr2O3 layer, significantly suppressing the corrosion rate. Temperature critically governs corrosion kinetics: at 35 °C, where S-CO2 exhibits maximum density and CO2 solubility in water peaks, electrochemical corrosion dominates, resulting in the highest corrosion rate. As temperature rises, the corrosion mechanism transitions to chemical corrosion, while accelerated formation of protective corrosion product films further reduces corrosion rates. Mechanistic analysis reveals that uniform corrosion arises from carbonic acid generated by water dissolution in S-CO2, whereas localized corrosion intensifies upon direct contact between precipitated aqueous phases and the steel surface. These findings offer critical theoretical foundations for optimizing material design, operational parameters, and corrosion mitigation strategies in S-CO2 transportation infrastructure.
Effect of Cr Content on Microstructure and Mechanical Properties of Heat Affected Zone in Supercritical Carbon Dioxide Transport Pipeline Steel
This study systematically investigates the influence mechanism of the element Cr on the mechanical properties of the heat-affected zone in pipeline steels for supercritical CO2 transportation. Microstructural evolution in the heat affected-zone was characterized through thermal simulation tests, Charpy impact testing (−10 °C), and microhardness measurements, complemented by multiscale microscopic analyses (optical microscopy, scanning electron microscopy, electron backscatter diffraction, and transmission electron microscopy). The results demonstrate that Cr addition enhances the base metal’s resistance to supercritical CO2 corrosion but reduces its low-temperature impact toughness from 277 J to 235 J at −10 °C. Notably, the intercritical heat-affected zone exhibits severe embrittlement, with impact energy plummeting from 235 J (base metal) to 77 J. Microstructural analysis reveals that Cr interacts with carbon to form stable carbonitride particles, which reduce the free carbon concentration and diffusion coefficient in austenite, thereby inducing heterogeneous austenitization. Undissolved carbonitrides pin grain boundaries, creating carbon concentration gradients. During rapid cooling, these localized carbon-enriched microregions preferentially transform into core–shell-structured M-A constituent, characterized by a micro-twin containing retained austenite core encapsulated by high hardness lath martensite. The synergistic interaction between micro-twins and interfacial thermal mismatch stress induces localized stress concentration, triggering microcrack nucleation and subsequent toughness degradation.
Effect of Cu Content on Corrosion Resistance of 3.5%Ni Weathering Steel in Marine Atmosphere of South China Sea
The influence of the copper (Cu) content on the corrosion resistance of 3.5%Ni low-carbon weathering steel was investigated using periodic dry–wet cycle accelerated corrosion tests. The mechanical properties of the steels were assessed via tensile and low-temperature impact tests, while corrosion resistance was evaluated based on weight loss measurements. Surface oxide layers were characterized using three-dimensional laser confocal microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and electrochemical methods. Electron probe microanalysis (EPMA) was employed to examine the cross-sectional morphology of the oxide layer after 72 h of accelerated corrosion tests. The results indicate that the solution state of Cu increased the strength of 3.5%Ni steels but significantly damaged the low-temperature toughness. As the Cu content increased from 0.75% to 1.25%, the corrosion rate decreased from 4.65 to 3.74 g/m2 h. However, when there was a further increase in the Cu content to 2.15%, there was little decrease in the corrosion rate. With the increase in the Cu content from 0.75% to 2.15%, the surface roughness of 3.5%Ni weathering steel after corrosion decreased from 5.543 to 5.019 μm, and the corrosion behavior was more uniform. Additionally, the α/γ protective factor of the oxide layer of the surface layer increased from 2.58 to 2.84 with an increase in the Cu content from 0.75% to 1.25%, resulting in the oxide layer of the surface layer being more protective. For 1.25%Cu steel, the corrosion current density of rusted samples is lower (ranging from 1.2609 × 10−4 A/cm2 to 3.7376 × 10−4 A/cm2), and the corrosion potential is higher (ranging from −0.85544 V to −0.40243 V). Therefore, the rusted samples are more corrosion resistant. The Cu in the oxide layer of the surface layer forms CuO and CuFeO2, which are helpful for increasing corrosion resistance, which inhibits the penetration of Cl−.
Effect of Cr Content on the Microstructure and Toughness of the Supercritically Coarse-Grained Heat-Affected Zone in X80 Pipeline Steel
The existing studies mainly focus on the coarse-grained heat-affected zone and the inter-critically reheated coarse-grained heat-affected zone, while the studies on other sub-zones are relatively low. Meanwhile, the studies on the Cr element in steel mainly focus on the influence of the Cr element on strength and hardness; however, its mechanism is not very clear. Therefore, three kinds of X80 experimental steels with different Cr contents (0 wt.%, 0.13 wt.%, and 0.40 wt.%) were designed in this paper. The thermal simulation experiments on the supercritically coarse-grained heat-affected zone (SCCGHAZ) were carried out using a Gleeble-3500 thermal simulator. The effects of Cr on the microstructure and toughness of SCCGHAZ were systematically investigated through Charpy impact tests and microstructural characterization techniques. The results indicate that the microstructures of the three Cr-containing X80 experimental steels in SCCGHAZ are predominantly composed of fine granular bainite. However, impact tests at −10 °C show that the SCCGHAZs of 0 wt.% and 0.13 wt.% Cr steel exhibit higher impact energy, while that of the 0.40 wt.% Cr steel demonstrates significantly reduced energy impact (<100 J). Microstructural characterization reveals that the impact toughness of the SCCGHAZ in X80 steel is correlated with microstructural features, including effective grain size, grain boundary angles, and the volume fraction and shape of martensite–austenite (M-A) constituents. Among these factors, the volume fraction of M-A constituents substantially influences toughness. It was found that island-shaped M-A constituents inhibit crack propagation, whereas blocky M-A constituents impair toughness.
Recrystallization and Second-Phase Precipitation in Nb-V Microalloyed Steels: A Thermal Simulation Study
This study investigates the relationship between recrystallization behavior and second-phase precipitation in Nb-V microalloyed steel during the rough rolling stage through thermal simulation experiments. The effects of deformation amount and temperature on austenite recrystallization were analyzed, alongside thermodynamic and kinetic calculations to assess the influence of Nb-V microalloying on second-phase precipitation. The results show that both the deformation amount and temperature significantly affect recrystallization, with Nb-V steel exhibiting more pronounced grain refinement compared to Nb steel. Significant differences in the type, morphology, and size distribution of second-phase precipitates were observed, with Nb-V steel primarily precipitating (Nb, V)C, while Nb steel only precipitates NbC. The average size of second-phase particles in Nb-V steel (10.60 nm) is smaller and more uniformly dispersed than in Nb steel (33.85 nm). Thermodynamic and kinetic analyses indicate that Nb-V microalloying accelerates second-phase precipitation kinetics. Moreover, second-phase particles hinder grain-boundary motion during recrystallization, with their effect surpassing that of Nb and V solid-solution atoms. These findings enhance the understanding of Nb-V composites in refining austenite grain size and promoting second-phase precipitation, providing valuable insights into the design and processing of high-performance microalloyed steels.
Study on Fracture Behavior and Toughening Mechanisms of Ultra-High-Strength Pipeline Steel
In this paper, a series of low-temperature CVN (Charpy V-notch impact test) and DWTT (drop-weight tear test) experiments were carried out to deal with the intensifying contradiction of strength and toughness of ultra-high-strength pipeline steel. The fracture behavior and toughening mechanisms of ultra-high-strength pipeline steel were investigated using scanning electron microscopy, transmission electron microscopy and backscattered electron diffraction systems. The results show that DWTT fractures in ultra-high-strength pipeline steel had a variety of unconventional morphological features compared to CVN fractures, including ridge protrusion in ductile fracture conditions and a large-size fracture platform in brittle fracture conditions. Therefore, DWTT fractures contained more information about the material fracturing process, and could better reflect the actual process of material fracturing. In ultra-high-strength pipeline steel, fine-grained granular bainite caused cracks to undergo large deflections or frequent small transitions, which consumed additional energy and improved toughness. In contrast, large-sized granular bainite, which consisted of low-angle grain boundaries, did not effectively prevent crack propagation when it encountered cracks, which was not conducive to improved toughness. Moreover, the M/A constituents in large-sized granular bainite aggregated, cracked, or fell off, which could easily lead to the formation of microcracks and was also detrimental to toughening.
Effect of Temperature on Corrosion of HSLA Steels with Different Cr Contents in a Water-Saturated Supercritical CO 2 Environment
This study investigates the effects of chromium (0.4~1.2) Cr content and temperature (35-80 °C) on the corrosion behavior and mechanisms of steels in a water-saturated supercritical CO (S-CO ) environment, aiming to provide theoretical foundations for material selection and corrosion management in S-CO pipeline systems. Results indicate that increasing Cr content promotes the formation of granular bainite as the dominant microstructure, accompanied by refined martensite-austenite (MA) constituents with increased population and reduced dimensions, leading to enhanced strength at the expense of toughness. In the S-CO /H O environment, Cr reacts with CO to form a dense Cr O layer, significantly suppressing the corrosion rate. Temperature critically governs corrosion kinetics: at 35 °C, where S-CO exhibits maximum density and CO solubility in water peaks, electrochemical corrosion dominates, resulting in the highest corrosion rate. As temperature rises, the corrosion mechanism transitions to chemical corrosion, while accelerated formation of protective corrosion product films further reduces corrosion rates. Mechanistic analysis reveals that uniform corrosion arises from carbonic acid generated by water dissolution in S-CO , whereas localized corrosion intensifies upon direct contact between precipitated aqueous phases and the steel surface. These findings offer critical theoretical foundations for optimizing material design, operational parameters, and corrosion mitigation strategies in S-CO transportation infrastructure.
Effect of Temperature on Corrosion of HSLA Steels with Different Cr Contents in a Water-Saturated Supercritical COsub.2 Environment
This study investigates the effects of chromium (0.4~1.2) Cr content and temperature (35–80 °C) on the corrosion behavior and mechanisms of steels in a water-saturated supercritical CO[sub.2] (S-CO[sub.2]) environment, aiming to provide theoretical foundations for material selection and corrosion management in S-CO[sub.2] pipeline systems. Results indicate that increasing Cr content promotes the formation of granular bainite as the dominant microstructure, accompanied by refined martensite–austenite (MA) constituents with increased population and reduced dimensions, leading to enhanced strength at the expense of toughness. In the S-CO[sub.2]/H[sub.2]O environment, Cr reacts with CO[sub.2] to form a dense Cr[sub.2]O[sub.3] layer, significantly suppressing the corrosion rate. Temperature critically governs corrosion kinetics: at 35 °C, where S-CO[sub.2] exhibits maximum density and CO[sub.2] solubility in water peaks, electrochemical corrosion dominates, resulting in the highest corrosion rate. As temperature rises, the corrosion mechanism transitions to chemical corrosion, while accelerated formation of protective corrosion product films further reduces corrosion rates. Mechanistic analysis reveals that uniform corrosion arises from carbonic acid generated by water dissolution in S-CO[sub.2], whereas localized corrosion intensifies upon direct contact between precipitated aqueous phases and the steel surface. These findings offer critical theoretical foundations for optimizing material design, operational parameters, and corrosion mitigation strategies in S-CO[sub.2] transportation infrastructure.
Hydrogen Embrittlement Sensitivity of X70 Welded Pipe Under a High-Pressure Pure Hydrogen Environment
With the rapid development of hydrogen pipelines, their safety issues have become increasingly prominent. In order to evaluate the properties of pipeline materials under a high-pressure hydrogen environment, this study investigates the hydrogen embrittlement sensitivity of X70 welded pipe in a 10 MPa high-pressure hydrogen environment, using slow strain rate testing (SSRT) and low-cycle fatigue (LCF) analysis. The microstructure, slow tensile and fatigue fracture morphology of base metal (BM) and weld metal (WM) were characterized and analyzed by means of ultra-depth microscope, scanning electron microscope (SEM), electron backscattering diffraction (EBSD), and transmission electron microscope (TEM). Results indicate that while the high-pressure hydrogen environment has minimal impact on ultimate tensile strength (UTS) for both BM and WM, it significantly decreases reduction of area (RA) and elongation (EL), with RA reduction in WM exceeding that in BM. Under the nitrogen environment, the slow tensile fracture of X70 pipeline steel BM and WM is a typical ductile fracture, while under the high-pressure hydrogen environment, the unevenness of the slow tensile fracture increased, and a large number of microcracks appeared on the fracture surface and edges, with the fracture mode changing to ductile fracture + quasi-cleavage fracture. In addition, the high-pressure hydrogen environment reduces the fatigue life of the BM and WM of X70 pipeline steel, and the fatigue life of the WM decreases more than that of the BM as well. Compared to the nitrogen environment, the fatigue fracture specimens of BM and WM in the hydrogen environment showed quasi-cleavage fracture patterns, and the fracture area in the instantaneous fracture zone (IFZ) was significantly reduced. Compared with the BM of X70 pipeline steel, although the effective grain size of the WM is smaller, WM’s microstructure, with larger Martensite/austenite (M/A) constituents and MnS and Al-rich oxides, contributes to a heightened embrittlement sensitivity. In contrast, the second-phase precipitation of nanosized Nb, V, and Ti composite carbon-nitride in the BM acts as an effective irreversible hydrogen trap, which can significantly reduce the hydrogen embrittlement sensitivity.