Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
8,148 result(s) for "Jiang, P."
Sort by:
Diverse polarization angle swings from a repeating fast radio burst source
Fast radio bursts (FRBs) are millisecond-duration radio transients 1 , 2 of unknown origin. Two possible mechanisms that could generate extremely coherent emission from FRBs invoke neutron star magnetospheres 3 – 5 or relativistic shocks far from the central energy source 6 – 8 . Detailed polarization observations may help us to understand the emission mechanism. However, the available FRB polarization data have been perplexing, because they show a host of polarimetric properties, including either a constant polarization angle during each burst for some repeaters 9 , 10 or variable polarization angles in some other apparently one-off events 11 , 12 . Here we report observations of 15 bursts from FRB 180301 and find various polarization angle swings in seven of them. The diversity of the polarization angle features of these bursts is consistent with a magnetospheric origin of the radio emission, and disfavours the radiation models invoking relativistic shocks. Polarization observations of the fast radio burst FRB 180301 with the FAST radio telescope show diverse polarization angle swings, consistent with a magnetospheric origin of the emission.
Turbulence in a heated pipe at supercritical pressure
The purpose of this research is to provide a new understanding of the turbulence dynamics in a heated flow of fluid at supercritical pressure. A unified explanation has been established for the laminarisation mechanisms due to the variations of thermophysical properties, buoyancy and inertia, the last of which plays a significant role in a developing flow. In the new understanding, the various factors can all be treated similarly as (pseudo-)body forces, the effect of which is to cause a reduction in the so-called apparent Reynolds number. The partially laminarising flow is represented by an equivalent-pressure-gradient reference flow plus a perturbation flow. Full laminarisation is used in the paper referring to a region where no new vortical structures are generated. This region is akin to the pre-transition region of a boundary layer bypass transition, and in both cases, the free-stream or pipe-core turbulence decays exponentially, but elongated streaks are formed in the boundary layer. Turbulence kinetic energy in this region may still be significant due to the decaying turbulence as well as newly generated streaks. The latter lead to an increase in streamwise velocity fluctuations near the wall. Later, re-transition occurs when the streaks break down and multi-scale vortices are generated, leading to an increase in the radial and circumferential velocity fluctuations. The structural effect of buoyancy on turbulence is weak and negative in the partially laminarising flow, but is dominant in the full laminarisation and re-transition regions.
Using Moran's I and GIS to study the spatial pattern of forest litter carbon density in a subtropical region of southeastern China
Spatial pattern information of carbon density in forest ecosystem including forest litter carbon (FLC) plays an important role in evaluating carbon sequestration potentials. The spatial variation of FLC density in the typical subtropical forests in southeastern China was investigated using Moran's I, geostatistics and a geographical information system (GIS). A total of 839 forest litter samples were collected based on a 12 km (south–north) × 6 km (east–west) grid system in Zhejiang province. Forest litter carbon density values were very variable, ranging from 10.2 kg ha−1 to 8841.3 kg ha−1, with an average of 1786.7 kg ha−1. The aboveground biomass had the strongest positive correlation with FLC density, followed by forest age and elevation. Global Moran's I revealed that FLC density had significant positive spatial autocorrelation. Clear spatial patterns were observed using local Moran's I. A spherical model was chosen to fit the experimental semivariogram. The moderate \"nugget-to-sill\" (0.536) value revealed that both natural and anthropogenic factors played a key role in spatial heterogeneity of FLC density. High FLC density values were mainly distributed in northwestern and western part of Zhejiang province, which were related to adopting long-term policy of forest conservation in these areas, while Hang-Jia-Hu (HJH) Plain, Jin-Qu (JQ) Basin and coastal areas had low FLC density due to low forest coverage and intensive management of economic forests. These spatial patterns were in line with the spatial-cluster map described by local Moran's I. Therefore, Moran's I, combined with geostatistics and GIS, could be used to study spatial patterns of environmental variables related to forest ecosystem.
No pulsed radio emission during a bursting phase of a Galactic magnetar
Fast radio bursts (FRBs) are millisecond-duration radio transients of unknown physical origin observed at extragalactic distances 1 – 3 . It has long been speculated that magnetars are the engine powering repeating bursts from FRB sources 4 – 13 , but no convincing evidence has been collected so far 14 . Recently, the Galactic magnetar SRG 1935+2154 entered an active phase by emitting intense soft γ-ray bursts 15 . One FRB-like event with two peaks (FRB 200428) and a luminosity slightly lower than the faintest extragalactic FRBs was detected from the source, in association with a soft γ-ray/hard-X-ray flare 18 – 21 . Here we report an eight-hour targeted radio observational campaign comprising four sessions and assisted by multi-wavelength (optical and hard-X-ray) data. During the third session, 29 soft-γ-ray repeater (SGR) bursts were detected in γ-ray energies. Throughout the observing period, we detected no single dispersed pulsed emission coincident with the arrivals of SGR bursts, but unfortunately we were not observing when the FRB was detected. The non-detection places a fluence upper limit that is eight orders of magnitude lower than the fluence of FRB 200428. Our results suggest that FRB–SGR burst associations are rare. FRBs may be highly relativistic and geometrically beamed, or FRB-like events associated with SGR bursts may have narrow spectra and characteristic frequencies outside the observed band. It is also possible that the physical conditions required to achieve coherent radiation in SGR bursts are difficult to satisfy, and that only under extreme conditions could an FRB be associated with an SGR burst. An 8-hour radio observational campaign of the Galactic magnetar SGR 1935+2154, assisted by multi-wavelength data, indicates that associations between fast radio bursts and soft γ-ray bursts are rare.
A critical review of key materials and issues in solid oxide cells
Solid oxide cells (SOCs) are all solid ceramic devices with the dual functionality of solid oxide fuel cells (SOFCs) to convert the chemical energy of fuels like H2, natural gas and other hydrocarbons to electricity and of solid oxide electrolysis cells (SOECs) to store renewable electric energy of sun and wind in hydrogen fuel. Among the electrochemical energy conversion and storage devices, SOCs are the most clean and efficient technology with unique dual functionality. Due to the high operation temperature (typically 600–800°C), SOCs exhibit many advantages over other energy conversion devices, such as low material cost, high efficiency and fuel flexibility. There has been rapid development of SOC technologies over the last decade with significant advantages and progress in key materials and a fundamental understanding of key issues such as an electrode, electrolyte, performance degradation, poisoning, and stack design. The reversible polarization also has a critical effect on the surface segregation and stability of the electrode and electrode/electrolyte interface. This critical review starts with a brief introduction, working principles and thermodynamics of SOC technology to readers with interests in this rapidly developing and emerging field. Then the key materials currently used in SOCs are summarized, followed by the discussion of the most advanced electrode modification methods and critical issues of SOCs, including the surface chemistry, segregation, electrode/electrolyte interface and varying material degradation mechanisms under reversible operations. The challenges and prospects of SOC technology for future developments are discussed. The solid oxide cell (SOC) is the most efficient high‐temperature solid oxide devices for distributed electricity generation and hydrogen formation. This article updates and critically reviews the fundamental issues and development of key and high‐performance electrodes, electrolytes, and stack materials.
Maternal obesity during pregnancy is negatively associated with maternal and neonatal iron status
Background/Objectives: Obesity among pregnant women may adversely affect both maternal iron status throughout pregnancy and placental transfer of iron. The objective of this study was to determine the association of maternal body mass index (BMI) with (1) maternal iron status and inflammation in mid and late pregnancy, (2) the change in maternal iron status throughout pregnancy and (3) neonatal iron status. Subjects/Methods: We examined longitudinal data from 1613 participants in a pregnancy iron supplementation trial in rural China. Women with uncomplicated singleton pregnancies were enrolled in the early second trimester of pregnancy and followed through parturition. Maternal blood samples obtained at enrollment and in the third trimester and cord blood samples were analyzed for a range of hematological and iron biomarkers. Results: There was a negative association between maternal BMI and iron status at enrollment (transferrin receptor (sTfR): r =0.20, P <0.001; body iron (BI): r =−0.05; P =0.03). This association was markedly stronger among obese women. Maternal BMI was positively associated with maternal inflammation (C-reactive protein: r =0.33, P <0.001). In multiple linear regression models, maternal BMI was negatively associated with neonatal iron status (cord serum ferritin: −0.01, P =0.008; BI: −0.06, P =0.006) and associated with a lower decrease in iron status throughout pregnancy (sTfR: −4.6, P <0.001; BI: 1.1, P =0.004). Conclusions: Maternal obesity during pregnancy may adversely affect both maternal and neonatal iron status, potentially through inflammatory pathways.
Direct numerical simulation of convective heat transfer of supercritical pressure in a vertical tube with buoyancy and thermal acceleration effects
Supercritical pressure fluids are widely used in heat transfer and energy systems. The benefit of high heat transfer performance and the successful avoidance of phase change from the use of supercritical pressure fluids are well-known, but the complex behaviours of such fluids owing to dramatic thermal property variations pose strong challenges to the design of heat transfer applications. In this paper, the turbulent flow and heat transfer of supercritical pressure $\\textrm {CO}_2$ in a small vertical tube influenced by coupled effects of buoyancy and thermal acceleration are numerically investigated using direct numerical simulation. Both upward and downward flows with an inlet Reynolds number of 3540 and pressure of 7.75 MPa have been simulated and the results are compared with corresponding experimental data. The flow and heat transfer results reveal that under buoyancy and thermal acceleration, the turbulent flow and heat transfer exhibit four developing periods in which buoyancy and thermal acceleration alternately dominate. The results suggest a way to distinguish the dominant factor of heat transfer in different periods and a criterion for heat transfer degradation under the complex coupling of buoyancy and thermal acceleration. An analysis of the orthogonal decomposition and the generative mechanism of turbulent structures indicates that the flow acceleration induces a stretch-to-disrupt mechanism of coherent turbulent structures. The significant flow acceleration can destroy the three-dimensional flow structure and stretch the vortices resulting in dissipation.
Genetic Associations with Gestational Duration and Spontaneous Preterm Birth
Despite evidence that genetic factors contribute to the duration of gestation and the risk of preterm birth, robust associations with genetic variants have not been identified. We used large data sets that included the gestational duration to determine possible genetic associations. We performed a genomewide association study in a discovery set of samples obtained from 43,568 women of European ancestry using gestational duration as a continuous trait and term or preterm (<37 weeks) birth as a dichotomous outcome. We used samples from three Nordic data sets (involving a total of 8643 women) to test for replication of genomic loci that had significant genomewide association (P<5.0×10 ) or an association with suggestive significance (P<1.0×10 ) in the discovery set. In the discovery and replication data sets, four loci (EBF1, EEFSEC, AGTR2, and WNT4) were significantly associated with gestational duration. Functional analysis showed that an implicated variant in WNT4 alters the binding of the estrogen receptor. The association between variants in ADCY5 and RAP2C and gestational duration had suggestive significance in the discovery set and significant evidence of association in the replication sets; these variants also showed genomewide significance in a joint analysis. Common variants in EBF1, EEFSEC, and AGTR2 showed association with preterm birth with genomewide significance. An analysis of mother-infant dyads suggested that these variants act at the level of the maternal genome. In this genomewide association study, we found that variants at the EBF1, EEFSEC, AGTR2, WNT4, ADCY5, and RAP2C loci were associated with gestational duration and variants at the EBF1, EEFSEC, and AGTR2 loci with preterm birth. Previously established roles of these genes in uterine development, maternal nutrition, and vascular control support their mechanistic involvement. (Funded by the March of Dimes and others.).
In vitro and in vivo anticancer effects of mevalonate pathway modulation on human cancer cells
Background: The increasing usage of statins (the 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors) has revealed a number of unexpected beneficial effects, including a reduction in cancer risk. Methods: We investigated the direct anticancer effects of different statins approved for clinical use on human breast and brain cancer cells. We also explored the effects of statins on cancer cells using in silico simulations. Results: In vitro studies showed that cerivastatin, pitavastatin, and fluvastatin were the most potent anti-proliferative, autophagy inducing agents in human cancer cells including stem cell-like primary glioblastoma cell lines. Consistently, pitavastatin was more effective than fluvastatin in inhibiting U87 tumour growth in vivo . Intraperitoneal injection was much better than oral administration in delaying glioblastoma growth. Following statin treatment, tumour cells were rescued by adding mevalonate and geranylgeranyl pyrophosphate. Knockdown of geranylgeranyl pyrophosphate synthetase-1 also induced strong cell autophagy and cell death in vitro and reduced U87 tumour growth in vivo . These data demonstrate that statins main effect is via targeting the mevalonate synthesis pathway in tumour cells. Conclusions: Our study demonstrates the potent anticancer effects of statins. These safe and well-tolerated drugs need to be further investigated as cancer chemotherapeutics in comprehensive clinical studies.
Clinical Illness and Outcomes in Patients with Ebola in Sierra Leone
In this report, the clinical presentation of some of the first cases of EVD occurring in the West African country of Sierra Leone are described, and factors associated with survival are characterized. The largest and most widespread outbreak of Ebola virus disease (EVD) continues to spread through West Africa, with more than 10,100 cases reported in Guinea, Sierra Leone, Liberia, Senegal, Nigeria, and Mali as of October 25, 2014. 1 The possibility of global spread of the disease was realized recently with the diagnosis of EVD in patients in the United States and Spain. 2 The EVD outbreak appears to have originated near the town of Guéckédou, which is in the forest region of Guinea and close to the borders of Sierra Leone and Liberia. 3 , 4 Sequence analyses indicated that the West African variant . . .