Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
21
result(s) for
"Jiang, Shouyong"
Sort by:
Deep Learning Based Prediction on Greenhouse Crop Yield Combined TCN and RNN
by
Cutsuridis, Vassilis
,
Gong, Liyun
,
Yu, Miao
in
Communication
,
crop yield prediction
,
deep learning
2021
Currently, greenhouses are widely applied for plant growth, and environmental parameters can also be controlled in the modern greenhouse to guarantee the maximum crop yield. In order to optimally control greenhouses’ environmental parameters, one indispensable requirement is to accurately predict crop yields based on given environmental parameter settings. In addition, crop yield forecasting in greenhouses plays an important role in greenhouse farming planning and management, which allows cultivators and farmers to utilize the yield prediction results to make knowledgeable management and financial decisions. It is thus important to accurately predict the crop yield in a greenhouse considering the benefits that can be brought by accurate greenhouse crop yield prediction. In this work, we have developed a new greenhouse crop yield prediction technique, by combining two state-of-the-arts networks for temporal sequence processing—temporal convolutional network (TCN) and recurrent neural network (RNN). Comprehensive evaluations of the proposed algorithm have been made on multiple datasets obtained from multiple real greenhouse sites for tomato growing. Based on a statistical analysis of the root mean square errors (RMSEs) between the predicted and actual crop yields, it is shown that the proposed approach achieves more accurate yield prediction performance than both traditional machine learning methods and other classical deep neural networks. Moreover, the experimental study also shows that the historical yield information is the most important factor for accurately predicting future crop yields.
Journal Article
Solving dynamic multi-objective problems with a new prediction-based optimization algorithm
by
Yang, Shengxiang
,
Jiang, Shouyong
,
Zhang, Qingyang
in
Algorithms
,
Biology and Life Sciences
,
Changing environments
2021
This paper proposes a new dynamic multi-objective optimization algorithm by integrating a new fitting-based prediction (FBP) mechanism with regularity model-based multi-objective estimation of distribution algorithm (RM-MEDA) for multi-objective optimization in changing environments. The prediction-based reaction mechanism aims to generate high-quality population when changes occur, which includes three subpopulations for tracking the moving Pareto-optimal set effectively. The first subpopulation is created by a simple linear prediction model with two different stepsizes. The second subpopulation consists of some new sampling individuals generated by the fitting-based prediction strategy. The third subpopulation is created by employing a recent sampling strategy, generating some effective search individuals for improving population convergence and diversity. Experimental results on a set of benchmark functions with a variety of different dynamic characteristics and difficulties illustrate that the proposed algorithm has competitive effectiveness compared with some state-of-the-art algorithms.
Journal Article
A novel and sensitive electrochemical sensor based on nanoporous gold for determination of As(III)
by
Liu, Jili
,
Chen, Chunfeng
,
Jiang, Shouyong
in
Analytical Chemistry
,
Arsenic
,
Characterization and Evaluation of Materials
2020
Three-dimensional porous gold nanoparticles (NPG) were synthesized in situ on indium-doped tin oxide (ITO) substrates by a green and convenient one-step electrodeposition method to achieve super-sensitive As(III) detection. The introduction of NPG method not only greatly improves the electron transfer capacity and surface area of sensor interface but provides more active sites for As(III) enrichment, thus boosting sensitivity and selectivity. The sensor was characterized by scanning electron microscopy, energy dispersion spectroscopy, differential pulse anode stripping voltammetry (DPASV), and electrochemical impedance to evaluate its morphology, composition, and electrochemical performance. The wall thickness of NPG was customized by optimizing the concentration of electroplating solution, dissolved electrolyte, deposition potential, and reaction time. Under optimal conditions, the electrochemical sensor showed a wide linear range from 0.1 to 50 μg/L As(III), with a detection limit (LOD) of 0.054 μg/L (S/N = 3). The LOD is far below 10 μg/L, the recommended maximum value by the world health organization for drinking water. Stability, reproducibility, and repeatability of NGP/ITO were determined to be 2.77%, 4.9%, and 4.1%, respectively. Additionally, the constructed sensor has been successfully applied to determine As(III) in three actual samples, and the results are in good agreement with that of hydride generation atomic fluorescence spectrometry (AFS).
Graphical abstract
Journal Article
Improving the multiobjective evolutionary algorithm based on decomposition with new penalty schemes
by
Jiang, Yong
,
Jiang, Shouyong
,
Yang, Shengxiang
in
Artificial Intelligence
,
Computational Intelligence
,
Control
2017
It has been increasingly reported that the multiobjective optimization evolutionary algorithm based on decomposition (MOEA/D) is promising for handling multiobjective optimization problems (MOPs). MOEA/D employs scalarizing functions to convert an MOP into a number of single-objective subproblems. Among them, penalty boundary intersection (PBI) is one of the most popular decomposition approaches and has been widely adopted for dealing with MOPs. However, the original PBI uses a constant penalty value for all subproblems and has difficulties in achieving a good distribution and coverage of the Pareto front for some problems. In this paper, we investigate the influence of the penalty factor on PBI, and suggest two new penalty schemes, i.e., adaptive penalty scheme and subproblem-based penalty scheme (SPS), to enhance the spread of Pareto-optimal solutions. The new penalty schemes are examined on several complex MOPs, showing that PBI with the use of them is able to provide a better approximation of the Pareto front than the original one. The SPS is further integrated into two recently developed MOEA/D variants to help balance the population diversity and convergence. Experimental results show that it can significantly enhance the algorithm’s performance.
Journal Article
Triangular Gaussian mutation to differential evolution
2020
Differential evolution (DE) has been a popular algorithm for its simple structure and few control parameters. However, there are some open issues in DE regrading its mutation strategies. An interesting one is how to balance the exploration and exploitation behaviour when performing mutation, and this has attracted a growing number of research interests over a decade. To address this issue, this paper presents a triangular Gaussian mutation strategy. This strategy utilizes the physical positions and the fitness differences of the vertices in the triangular structure. Based on this strategy, a triangular Gaussian mutation to DE and its improved version (ITGDE) are suggested. Empirical studies are carried out on the 20 benchmark functions and show that, in comparison with several state-of-the-art DE variants, ITGDE obtains significantly better or at least comparable results, suggesting the proposed mutation strategy is promising for DE.
Journal Article
Biological survival optimization algorithm with its engineering and neural network applications
by
Yang, Shengxiang
,
Dong, Yongquan
,
He, Xiangyu
in
Artificial Intelligence
,
Computational Intelligence
,
Control
2023
This study proposes a novel and lightweight bio-inspired computation technique named biological survival optimizer (BSO), which simulates the escape behavior of prey in the natural environment. This algorithm consists of two important courses, escape phase and adjustment phase. Specifically, in the escape phase, each search agent is required to update its location using the best, the worst and a neighboring individual of the population. The adjustment phase is implemented using the simplex algorithm for search better location of the worst agent within a small region. The effectiveness of the BSO is validated on the CEC2017 benchmark problems, three classical engineering structural problems and neural network training models. Simulation comparison results considering both convergence and accuracy simultaneously show that BSO has competitive performance compared with other state-of-the-art optimization techniques.
Journal Article
Evolutionary algorithms for static and dynamic multiobjective optimization
by
Jiang, Shouyong
in
Decomposition
2016
Many real-world optimization problems consist of a number of conflicting objectives that have to be optimized simultaneously. Due to the presence of multiple conflicting ob- jectives, there is no single solution that can optimize all the objectives. Therefore, the resulting multiobjective optimization problems (MOPs) resort to a set of trade-off op- timal solutions, called the Pareto set in the decision space and the Pareto front in the objective space. Traditional optimization methods can at best find one solution in a sin- gle run, thereby making them inefficient to solve MOPs. In contrast, evolutionary algo- rithms (EAs) are able to approximate multiple optimal solutions in a single run. This strength makes EAs good candidates for solving MOPs. Over the past several decades, there have been increasing research interests in developing EAs or improving their perfor- mance, resulting in a large number of contributions towards the applicability of EAs for MOPs. However, the performance of EAs depends largely on the properties of the MOPs in question, e.g., static/dynamic optimization environments, simple/complex Pareto front characteristics, and low/high dimensionality. Different problem properties may pose dis- tinct optimization difficulties to EAs. For example, dynamic (time-varying) MOPs are generally more challenging than static ones to EAs. Therefore, it is not trivial to further study EAs in order to make them widely applicable to MOPs with various optimization scenarios or problem properties. This thesis is devoted to exploring EAs’ ability to solve a variety of MOPs with dif- ferent problem characteristics, attempting to widen EAs’ applicability and enhance their general performance. To start with, decomposition-based EAs are enhanced by incorpo- rating two-phase search and niche-guided solution selection strategies so as to make them suitable for solving MOPs with complex Pareto fronts. Second, new scalarizing functions are proposed and their impacts on evolutionary multiobjective optimization are exten- sively studied. On the basis of the new scalarizing functions, an efficient decomposition- based EA is introduced to deal with a class of hard MOPs. Third, a diversity-first- and-convergence-second sorting method is suggested to handle possible drawbacks of convergence-first based sorting methods. The new sorting method is then combined with strength based fitness assignment, with the aid of reference directions, to optimize MOPs with an increase of objective dimensionality. After that, we study the field of dynamic multiobjective optimization where objective functions and constraints can change over time. A new set of test problems consisting of a wide range of dynamic characteristics is introduced at an attempt to standardize test environments in dynamic multiobjective optimization, thereby aiding fair algorithm comparison and deep performance analysis. Finally, a dynamic EA is developed to tackle dynamic MOPs by exploiting the advan- tages of both generational and steady-state algorithms. All the proposed approaches have been extensively examined against existing state-of-the-art methods, showing fairly good performance in a variety of test scenarios. The research work presented in the thesis is the output of initiative and novel attempts to tackle some challenging issues in evolutionary multiobjective optimization. This re- search has not only extended the applicability of some of the existing approaches, such as decomposition-based or Pareto-based algorithms, for complex or hard MOPs, but also contributed to moving forward research in the field of dynamic multiobjective optimiza- tion with novel ideas including new test suites and novel algorithm design.
Dissertation
Vector Autoregressive Evolution for Dynamic Multi-Objective Optimisation
by
Hu, Yaru
,
Jiang, Shouyong
,
Yang, Shengxiang
in
Algorithms
,
Changing environments
,
Evolutionary algorithms
2023
Dynamic multi-objective optimisation (DMO) handles optimisation problems with multiple (often conflicting) objectives in varying environments. Such problems pose various challenges to evolutionary algorithms, which have popularly been used to solve complex optimisation problems, due to their dynamic nature and resource restrictions in changing environments. This paper proposes vector autoregressive evolution (VARE) consisting of vector autoregression (VAR) and environment-aware hypermutation to address environmental changes in DMO. VARE builds a VAR model that considers mutual relationship between decision variables to effectively predict the moving solutions in dynamic environments. Additionally, VARE introduces EAH to address the blindness of existing hypermutation strategies in increasing population diversity in dynamic scenarios where predictive approaches are unsuitable. A seamless integration of VAR and EAH in an environment-adaptive manner makes VARE effective to handle a wide range of dynamic environments and competitive with several popular DMO algorithms, as demonstrated in extensive experimental studies. Specially, the proposed algorithm is computationally 50 times faster than two widely-used algorithms (i.e., TrDMOEA and MOEA/D-SVR) while producing significantly better results.