Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,132 result(s) for "Jin, Kui"
Sort by:
Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development
To discover new drugs to combat COVID-19, an understanding of the molecular basis of SARS-CoV-2 infection is urgently needed. Here, for the first time, we report the crucial role of cathepsin L (CTSL) in patients with COVID-19. The circulating level of CTSL was elevated after SARS-CoV-2 infection and was positively correlated with disease course and severity. Correspondingly, SARS-CoV-2 pseudovirus infection increased CTSL expression in human cells in vitro and human ACE2 transgenic mice in vivo, while CTSL overexpression, in turn, enhanced pseudovirus infection in human cells. CTSL functionally cleaved the SARS-CoV-2 spike protein and enhanced virus entry, as evidenced by CTSL overexpression and knockdown in vitro and application of CTSL inhibitor drugs in vivo. Furthermore, amantadine, a licensed anti-influenza drug, significantly inhibited CTSL activity after SARS-CoV-2 pseudovirus infection and prevented infection both in vitro and in vivo. Therefore, CTSL is a promising target for new anti-COVID-19 drug development.
Berberine is an insulin secretagogue targeting the KCNH6 potassium channel
Coptis chinensis is an ancient Chinese herb treating diabetes in China for thousands of years. However, its underlying mechanism remains poorly understood. Here, we report the effects of its main active component, berberine (BBR), on stimulating insulin secretion. In mice with hyperglycemia induced by a high-fat diet, BBR significantly increases insulin secretion and reduced blood glucose levels. However, in mice with hyperglycemia induced by global or pancreatic islet β-cell-specific Kcnh6 knockout, BBR does not exert beneficial effects. BBR directly binds KCNH6 potassium channels, significantly accelerates channel closure, and subsequently reduces KCNH6 currents. Consequently, blocking KCNH6 currents prolongs high glucose-dependent cell membrane depolarization and increases insulin secretion. Finally, to assess the effect of BBR on insulin secretion in humans, a randomized, double-blind, placebo-controlled, two-period crossover, single-dose, phase 1 clinical trial (NCT03972215) including 15 healthy men receiving a 160-min hyperglycemic clamp experiment is performed. The pre-specified primary outcomes are assessment of the differences of serum insulin and C-peptide levels between BBR and placebo treatment groups during the hyperglycemic clamp study. BBR significantly promotes insulin secretion under hyperglycemic state comparing with placebo treatment, while does not affect basal insulin secretion in humans. All subjects tolerate BBR well, and we observe no side effects in the 14-day follow up period. In this study, we identify BBR as a glucose-dependent insulin secretagogue for treating diabetes without causing hypoglycemia that targets KCNH6 channels. Berberine is a compound with glucose-lowering effects in mice and humans. Here, the authors show that in mice berberine has beneficial glycemic effects by promoting insulin secretion, which requires the potassium channel KCNH6 in beta cells, and that berberine can promote insulin secretion in healthy men in a phase 1 clinical trial.
Near-room temperature ferromagnetic insulating state in highly distorted LaCoO2.5 with CoO5 square pyramids
Dedicated control of oxygen vacancies is an important route to functionalizing complex oxide films. It is well-known that tensile strain significantly lowers the oxygen vacancy formation energy, whereas compressive strain plays a minor role. Thus, atomic reconstruction by extracting oxygen from a compressive-strained film is challenging. Here we report an unexpected LaCoO 2.5 phase with a zigzag-like oxygen vacancy ordering through annealing a compressive-strained LaCoO 3 in vacuum. The synergetic tilt and distortion of CoO 5 square pyramids with large La and Co shifts are quantified using scanning transmission electron microscopy. The large in-plane expansion of CoO 5 square pyramids weaken the crystal field splitting and facilitated the ordered high-spin state of Co 2+ , which produces an insulating ferromagnetic state with a Curie temperature of ~284 K and a saturation magnetization of ~0.25 μ B /Co. These results demonstrate that extracting targeted oxygen from a compressive-strained oxide provides an opportunity for creating unexpected crystal structures and novel functionalities. Here, Zhang et al. succeed in creating a heavily distorted oxygen deficient film of lanthanum cobaltite. The new phase of LaCoO 2.5 has several unique properties, most notably, a Curie temperature of 284 K, significantly larger than the films from which it was derived.
A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia
Metabolic endotoxemia, commonly derived from gut dysbiosis, is a primary cause of chronic low grade inflammation that underlies many chronic diseases. Here we show that mice fed a diet high in omega-6 fatty acids exhibit higher levels of metabolic endotoxemia and systemic low-grade inflammation, while transgenic conversion of tissue omega-6 to omega-3 fatty acids dramatically reduces endotoxemic and inflammatory status. These opposing effects of tissue omega-6 and omega-3 fatty acids can be eliminated by antibiotic treatment and animal co-housing, suggesting the involvement of the gut microbiota. Analysis of gut microbiota and fecal transfer revealed that elevated tissue omega-3 fatty acids enhance intestinal production and secretion of intestinal alkaline phosphatase (IAP), which induces changes in the gut bacteria composition resulting in decreased lipopolysaccharide production and gut permeability and ultimately, reduced metabolic endotoxemia and inflammation. Our findings uncover an interaction between host tissue fatty acid composition and gut microbiota as a novel mechanism for the anti-inflammatory effect of omega-3 fatty acids. Given the excess of omega-6 and deficiency of omega-3 in the modern Western diet, the differential effects of tissue omega-6 and omega-3 fatty acids on gut microbiota and metabolic endotoxemia provide insight into the etiology and management of today’s health epidemics.
Spirulina maxima extract prevents activation of the NLRP3 inflammasome by inhibiting ERK signaling
The blue-green alga Spirulina maxima is a microscopic filamentous cyanobacterium. Spirulina was recently reported to elicit beneficial effects such as reducing cholesterol and inducing weight loss; however, its effects on inflammation are unknown. To determine the effect of S. maxima extract (SME) on innate immunity, we investigated the NLRP3 inflammasome activation, which is a multiprotein scaffolding complex that plays important roles in innate immune responses to many pathogenic infections in macrophages. SME suppressed lipopolysaccharide (LPS)-induced upregulation of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin (IL)-12, IL-1β, and IL-18 in RAW264.7 cells. In addition, SME attenuated LPS-induced NLRP3 inflammasome activation, and thus pro-IL-1β could not be cleaved to IL-1β by activated caspase-1, which is activated by the NLRP3 inflammasome in RAW264.7 cells. Moreover, SME inhibited LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK) in RAW264.7 cells, and attenuated the generation of ERK1 induced-reactive oxygen species (ROS), resulting in decreased expression of NF-κB. These findings suggest that SME suppresses the effects of the NLRP3 inflammasome via regulation of extracellular signal-regulated kinase (ERK). In summary, we demonstrated that SME prevents activation of the NLRP3 inflammasome by inhibiting ERK signaling.
Preparation and application of a novel magnetic molecularly imprinted polymer for simultaneous and rapid determination of three trace endocrine disrupting chemicals in lake water and milk samples
Exposure to endocrine disruptor substances will alter the function of the endocrine system and then cause adverse effects on human health. Among these endocrine disrupting chemicals, hexestrol, nonylphenol, and bisphenol A are most commonly used worldwide. In this study, we aim to develop a simple, rapid, and efficient analytical method for the simultaneous determination of trace hexestrol, nonylphenol, and bisphenol A in lake water and milk samples. A magnetic molecularly imprinted polymer-assisted magnetic solid-phase extraction technique was applied. The magnetic molecularly imprinted polymer was prepared and characterized by electron scanning microscopy and Fourier transform infrared spectroscopy. Subsequently, different experiments were conducted to optimize the magnetic solid-phase extraction conditions. High-performance liquid chromatography with UV detection was employed to determine hexestrol, nonylphenol, and bisphenol A. Limits of detection of the developed method were from 0.1 to 0.3 μg L−1 and spiked recoveries ranged from 89.9 to 102.5%, with a relative standard deviation of < 2.5% (intraday). Results obtained from this study showed that the proposed magnetic solid-phase extraction method was a simple, rapid, and sensitive sample pre-treatment method for the determination of trace hexestrol, nonylphenol, and bisphenol in different aqueous samples.
Hydrogel-exosome system in tissue engineering: A promising therapeutic strategy
Characterized by their pivotal roles in cell-to-cell communication, cell proliferation, and immune regulation during tissue repair, exosomes have emerged as a promising avenue for “cell-free therapy” in clinical applications. Hydrogels, possessing commendable biocompatibility, degradability, adjustability, and physical properties akin to biological tissues, have also found extensive utility in tissue engineering and regenerative repair. The synergistic combination of exosomes and hydrogels holds the potential not only to enhance the efficiency of exosomes but also to collaboratively advance the tissue repair process. This review has summarized the advancements made over the past decade in the research of hydrogel-exosome systems for regenerating various tissues including skin, bone, cartilage, nerves and tendons, with a focus on the methods for encapsulating and releasing exosomes within the hydrogels. It has also critically examined the gaps and limitations in current research, whilst proposed future directions and potential applications of this innovative approach. [Display omitted] •Recent advances in exosome isolation techniques as natural nanovesicles and their prospective uses in tissue repair.•An overview of methods to load and release exosomes in hydrogels, focusing on environmentally responsive techniques.•An updated review of hydrogel-exosome systems in tissue engineering and regenerative medicine.•A discussion on the potential clinical applications of hydrogel-exosome systems.
Plasma metabolomic profiling of proliferative diabetic retinopathy
Background Proliferative diabetic retinopathy (PDR), a sight-threatening retinopathy, is the leading cause of irreversible blindness in adults. Despite strict control of systemic risk factors, a fraction of patients with diabetes develop PDR, suggesting the existence of other potential pathogenic factors underlying PDR. This study aimed to investigate the plasma metabotype of patients with PDR and to identify novel metabolite markers for PDR. Biomarkers identified from this study will provide scientific insight and new strategies for the early diagnosis and intervention of diabetic retinopathy. Methods A total of 1024 patients with type 2 diabetes were screened. To match clinical parameters between case and control subjects, patients with PDR (PDR, n  = 21) or those with a duration of diabetes of ≥10 years but without diabetic retinopathy (NDR, n  = 21) were assigned to the present case-control study. Distinct metabolite profiles of serum were examined using liquid chromatography-mass spectrometry (LC-MS). Results The distinct metabolites between PDR and NDR groups were significantly enriched in 9 KEGG pathways ( P  < 0.05, impact > 0.1), namely, alanine, aspartate and glutamate metabolism, caffeine metabolism, beta-alanine metabolism, purine metabolism, cysteine and methionine metabolism, sulfur metabolism, sphingosine metabolism, and arginine and proline metabolism. A total of 63 altered metabolites played important roles in these pathways. Finally, 4 metabolites were selected as candidate biomarkers for PDR, namely, fumaric acid, uridine, acetic acid, and cytidine. The area under the curve for these biomarkers were 0.96, 0.95, 1.0, and 0.95, respectively. Conclusions This study suggested that impairment in the metabolism of pyrimidines, arginine and proline were identified as metabolic dysregulation associated with PDR. And fumaric acid, uridine, acetic acid, and cytidine might be potential biomarkers for PDR. Fumaric acid was firstly reported as a novel metabolite marker with no prior reports of association with diabetes or diabetic retinopathy, which might provide insights into potential new pathogenic pathways for diabetic retinopathy.
Spirulina maxima Extract Reduces Obesity through Suppression of Adipogenesis and Activation of Browning in 3T3-L1 Cells and High-Fat Diet-Induced Obese Mice
Obesity predisposes animals towards the metabolic syndrome and diseases such as type 2 diabetes, atherosclerosis, and cardiovascular disease. Spirulina maxima is a microalga with anti-oxidant, anti-cancer, and neuroprotective activities, but the anti-obesity effect of Spirulina maxima 70% ethanol extract (SM70EE) has not yet been fully established. We investigated the effect of SM70EE on adipogenesis, lipogenesis, and browning using in vitro and in vivo obesity models. SM70EE treatment reduced lipid droplet accumulation by the oil red O staining method and downregulated the adipogenic proteins C/EBPα, PPARγ, and aP2, and the lipogenic proteins SREBP1, ACC, FAS, LPAATβ, Lipin1, and DGAT1 by western blot analysis. In addition, the index components of SM70EE, chlorophyll a, and C-phycocyanin, reduced adipogenesis and lipogenesis protein levels in 3T3-L1 and C3H10T1/2 cells. High-fat diet (HFD)-fed mice administered with SM70EE demonstrated smaller adipose depots and lower blood lipid concentrations than control HFD-fed mice. The lower body mass gain in treated SM70EE-administrated mice was associated with lower protein expression of adipogenesis factors and higher expression of AMPKα-induced adipose browning proteins PRDM16, PGC1α, and UCP1. SM70EE administration ameliorates obesity, likely by reducing adipogenesis and activating the thermogenic program, in 3T3-L1 cells and HFD-induced obese mice.
The role of inflammatory response and metabolic reprogramming in sepsis-associated acute kidney injury: mechanistic insights and therapeutic potential
Sepsis represents a severe condition characterized by organ dysfunction resulting from a dysregulated host response to infection. Among the organs affected, the kidneys are particularly vulnerable, with significant functional impairment that markedly elevates mortality rates. Previous researches have highlighted that both inflammatory response dysregulation and metabolic reprogramming are crucial in the onset and progression of sepsis associated acute kidney injury (SA-AKI), making these processes potential targets for innovative therapies. This study aims to elucidate the pathophysiological mechanisms of renal injury in sepsis by perspective of inflammatory response dysregulation, with particular emphasis on pyroptosis, necroptosis, autophagy, and ferroptosis. Furthermore, it will incorporate insights into metabolic reprogramming to provide a detailed analysis of the mechanisms driving SA-AKI and explore potential targeted therapeutic strategies, providing solid theoretical framework for the development of targeted therapies for SA-AKI.