Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
15 result(s) for "Jinwal, Umesh K."
Sort by:
Therapeutic Potential of the Hsp90/Cdc37 Interaction in Neurodegenerative Diseases
Alzheimer's, Huntington's, and Parkinson's are devastating neurodegenerative diseases that are prevalent in the aging population. Patient care costs continue to rise each year, because there is currently no cure or disease modifying treatments for these diseases. Numerous efforts have been made to understand the molecular interactions governing the disease development. These efforts have revealed that the phosphorylation of proteins by kinases may play a critical role in the aggregation of disease-associated proteins, which is thought to contribute to neurodegeneration. Interestingly, a molecular chaperone complex consisting of the 90 kDa heat shock protein (Hsp90) and Cell Division Cycle 37 (Cdc37) has been shown to regulate the maturation of many of these kinases as well as regulate some disease-associated proteins directly. Thus, the Hsp90/Cdc37 complex may represent a potential drug target for regulating proteins linked to neurodegenerative diseases, through both direct and indirect interactions. Herein, we discuss the broad understanding of many Hsp90/Cdc37 pathways and how this protein complex may be a useful target to regulate the progression of neurodegenerative disease.
A New Anti-Depressive Strategy for the Elderly: Ablation of FKBP5/FKBP51
The gene FKBP5 codes for FKBP51, a co-chaperone protein of the Hsp90 complex that increases with age. Through its association with Hsp90, FKBP51 regulates the glucocorticoid receptor (GR). Single nucleotide polymorphisms (SNPs) in the FKBP5 gene associate with increased recurrence of depressive episodes, increased susceptibility to post-traumatic stress disorder, bipolar disorder, attempt of suicide, and major depressive disorder in HIV patients. Variation in one of these SNPs correlates with increased levels of FKBP51. FKBP51 is also increased in HIV patients. Moreover, increases in FKBP51 in the amygdala produce an anxiety phenotype in mice. Therefore, we tested the behavioral consequences of FKBP5 deletion in aged mice. Similar to that of naïve animals treated with classical antidepressants FKBP5-/- mice showed antidepressant behavior without affecting cognition and other basic motor functions. Reduced corticosterone levels following stress accompanied these observed effects on depression. Age-dependent anxiety was also modulated by FKBP5 deletion. Therefore, drug discovery efforts focused on depleting FKBP51 levels may yield novel antidepressant therapies.
Rhodacyanine Derivative Selectively Targets Cancer Cells and Overcomes Tamoxifen Resistance
MKT-077, a rhodacyanine dye, was shown to produce cancer specific cell death. However, complications prevented the use of this compound beyond clinical trials. Here we describe YM-1, a derivative of MKT-077. We found that YM-1 was more cytotoxic and localized differently than MKT-077. YM-1 demonstrated this cytotoxicity across multiple cancer cell lines. This toxicity was limited to cancer cell lines; immortalized cell models were unaffected. Brief applications of YM-1 were found to be non-toxic. Brief treatment with YM-1 restored tamoxifen sensitivity to a refractory tamoxifen-resistant MCF7 cell model. This effect is potentially due to altered estrogen receptor alpha phosphorylation, an outcome precipitated by selective reductions in Akt levels (Akt/PKB). Thus, modifications to the rhodocyanine scaffold could potentially be made to improve efficacy and pharmacokinetic properties. Moreover, the impact on tamoxifen sensitivity could be a new utility for this compound family.
Phenothiazine-mediated rescue of cognition in tau transgenic mice requires neuroprotection and reduced soluble tau burden
Background It has traditionally been thought that the pathological accumulation of tau in Alzheimer's disease and other tauopathies facilitates neurodegeneration, which in turn leads to cognitive impairment. However, recent evidence suggests that tau tangles are not the entity responsible for memory loss, rather it is an intermediate tau species that disrupts neuronal function. Thus, efforts to discover therapeutics for tauopathies emphasize soluble tau reductions as well as neuroprotection. Results Here, we found that neuroprotection alone caused by methylene blue (MB), the parent compound of the anti-tau phenothiaziazine drug, Rember™, was insufficient to rescue cognition in a mouse model of the human tauopathy, progressive supranuclear palsy (PSP) and fronto-temporal dementia with parkinsonism linked to chromosome 17 (FTDP17): Only when levels of soluble tau protein were concomitantly reduced by a very high concentration of MB, was cognitive improvement observed. Thus, neurodegeneration can be decoupled from tau accumulation, but phenotypic improvement is only possible when soluble tau levels are also reduced. Conclusions Neuroprotection alone is not sufficient to rescue tau-induced memory loss in a transgenic mouse model. Development of neuroprotective agents is an area of intense investigation in the tauopathy drug discovery field. This may ultimately be an unsuccessful approach if soluble toxic tau intermediates are not also reduced. Thus, MB and related compounds, despite their pleiotropic nature, may be the proverbial \"magic bullet\" because they not only are neuroprotective, but are also able to facilitate soluble tau clearance. Moreover, this shows that neuroprotection is possible without reducing tau levels. This indicates that there is a definitive molecular link between tau and cell death cascades that can be disrupted.
Akt and CHIP Coregulate Tau Degradation through Coordinated Interactions
A hallmark of the pathology of Alzheimer's disease is the accumulation of the microtubule-associated protein tau into fibrillar aggregates. Recent studies suggest that they accumulate because cytosolic chaperones fail to clear abnormally phosphorylated tau, preserving a pool of toxic tau intermediates within the neuron. We describe a mechanism for tau clearance involving a major cellular kinase, Akt. During stress, Akt is ubiquitinated and degraded by the tau ubiquitin ligase CHIP, and this largely depends on the Hsp90 complex. Akt also prevents CHIP-induced tau ubiquitination and its subsequent degradation, either by regulating the Hsp90/CHIP complex directly or by competing as a client protein with tau for binding. Akt levels tightly regulate the expression of CHIP, such that, as Akt levels are suppressed, CHIP levels also decrease, suggesting a potential stress response feedback mechanism between ligase and kinase activity. We also show that Akt and the microtubule affinity-regulating kinase 2 (PAR1/MARK2), a known tau kinase, interact directly. Akt enhances the activity of PAR1 to promote tau hyperphosphorylation at S262/S356, a tau species that is not recognized by the CHIP/Hsp90 complex. Moreover, Akt1 knockout mice have reduced levels of tau phosphorylated at PAR1/MARK2 consensus sites. Hence, Akt serves as a major regulator of tau biology by manipulating both tau kinases and protein quality control, providing a link to several common pathways that have demonstrated dysfunction in Alzheimer's disease.
Correction: Rhodacyanine Derivative Selectively Targets Cancer Cells and Overcomes Tamoxifen Resistance
(2012) Correction: Rhodacyanine Derivative Selectively Targets Cancer Cells and Overcomes Tamoxifen Resistance. No competing interests declared.
Identification of Apo B48 and other novel biomarkers in amyotrophic lateral sclerosis patient fibroblasts
Amyotrophic lateral sclerosis (ALS) is a debilitating fatal neurodegenerative disorder. 90-95% of ALS cases are sporadic with no clear risk factors associated with the disease. Identification of biomarkers associated with ALS may lead to early detection and make it more amenable to therapeutic intervention. SILAC was used to quantitatively analyze the proteomes of ALS and control human fibroblasts. Out of total of 861 proteins identified, 33 were found to be differentially regulated. ApoB48 and Hsp20 were downregulated, while Fibulin-1 was upregulated. We report the differential regulation of these proteins in ALS fibroblasts, and their potential as novel biomarkers and possible drug targets for ALS.
Chaperone signalling complexes in Alzheimer's disease
•  Introduction ‐  Chaperones: the basics ‐  Hsp90, Hsp70 and CHIP ‐  Substrate processing ‐  Client degradation versus folding ‐  Chaperone expression ‐  Small Hsps •  Chaperone regulation in Alzheimer's disease ‐  Chaperone involvement in APP, presenilins and amyloid processing ‐  Chaperone regulation of the MAPT •  Conclusions Molecular chaperones and heat shock proteins (Hsp) have emerged as critical regulators of proteins associated with neurodegenerative disease pathologies. The very nature of the chaperone system, which is to maintain protein quality control, means that most nascent proteins come in contact with chaperone proteins. Thus, amyloid precursor protein (APP), members of the gamma‐secretase complex (presenilin 1 [PS1] collectively), the microtubule‐associated protein tau (MAPT) as well as a number of neuroinflammatory components are all in contact with chaperones from the moment of their production. Chaperones are often grouped together as one machine presenting abnormal or mutant proteins to the proteasome for degradation, but this is not at all the case. In fact, the chaperone family consists of more than 100 proteins in mammalian cells, and the primary role for most of these proteins is to protect clients following synthesis and during stress; only as a last resort do they facilitate protein degradation. To the best of our current knowledge, the chaperone system in eukaryotic cells revolves around the ATPase activities of Hsp70 and Hsp90, the two primary chaperone scaffolds. Other chaperones and co‐chaperones manipulate the ATPase activities of Hsp70 and Hsp90, facilitating either folding of the client or its degradation. In the case of Alzheimer's disease (AD), a number of studies have recently emerged describing the impact that these chaperones have on the proteotoxic effects of tau and amyloid‐β accumulation. Here, we present the current understandings of chaperone biology and examine the literature investigating these proteins in the context of AD.
Bending Tau into Shape: The Emerging Role of Peptidyl-Prolyl Isomerases in Tauopathies
The Hsp90-associated cis-trans peptidyl-prolyl isomerase—FK506 binding protein 51 (FKBP51)—was recently found to co-localize with the microtubule (MT)-associated protein tau in neurons and physically interact with tau in brain tissues from humans who died from Alzheimer’s disease (AD). Tau pathologically aggregates in neurons, a process that is closely linked with cognitive deficits in AD. Tau typically functions to stabilize and bundle MTs. Cellular events like calcium influx destabilize MTs, disengaging tau. This excess tau should be degraded, but sometimes it is stabilized and forms higher-order aggregates, a pathogenic hallmark of tauopathies. FKBP51 was also found to increase in forebrain neurons with age, further supporting a novel role for FKBP51 in tau processing. This, combined with compelling evidence that the prolyl isomerase Pin1 regulates tau stability and phosphorylation dynamics, suggests an emerging role for isomerization in tau pathogenesis.