Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
123 result(s) for "Jiri A. Mares"
Sort by:
Composite Detectors Based on Single-Crystalline Films and Single Crystals of Garnet Compounds
This manuscript summarizes recent results on the development of composite luminescent materials based on the single-crystalline films and single crystals of simple and mixed garnet compounds obtained by the liquid-phase epitaxy growth method. Such composite materials can be applied as scintillating and thermoluminescent (TL) detectors for radiation monitoring of mixed ionization fluxes, as well as scintillation screens in the microimaging techniques. The film and crystal parts of composite detectors were fabricated from efficient scintillation/TL materials based on Ce3+-, Pr3+-, and Sc3+-doped Lu3Al5O12 garnets, as well as Ce3+-doped Gd3−xAxAl5−yGayO12 mixed garnets, where A = Lu or Tb; x = 0–1; y = 2–3 with significantly different scintillation decay or positions of the main peaks in their TL glow curves. This work also summarizes the results of optical study of films, crystals, and epitaxial structures of these garnet compounds using absorption, cathodoluminescence, and photoluminescence. The scintillation and TL properties of the developed materials under α- and β-particles and γ-quanta excitations were studied as well. The most efficient variants of the composite scintillation and TL detectors for monitoring of composition of mixed beams of ionizing radiation were selected based on the results of this complex study.
Composition Engineering of (Lu,Gd,Tb)3(Al,Ga)5O12:Ce Film/Gd3(Al,Ga)5O12:Ce Substrate Scintillators
The paper addresses the development of composite scintillation materials providing simultaneous real-time monitoring of different types of ionizing radiation (α-, β-particles, γ-rays) in mixed fluxes of particles and quanta. The detectors are based on composite heavy oxide scintillators consisting of a thin single-crystalline film and a bulk single-crystal substrate. The film and substrate respond to certain types of ionizing particles, forming together an all-in-one composite scintillator capable of distinguishing the type of radiation through the different time characteristics of the scintillation response. Here, we report the structure, composition, and scintillation properties under different ionizing radiations of (Lu,Gd,Tb)3(Al,Ga)5O12:Ce films deposited using liquid phase epitaxy onto Gd3(Al1−xGax)5O12:Ce (GAGG:Ce) single-crystal substrates. The most promising compositions with the highest light yields and the largest differences in scintillation decay timing under irradiation with α-, β-particles, and γ-rays were selected. Such detectors are promising for environmental security purposes, medical tomography, and other radiation detection applications.
Development of Composite Scintillators Based on the LuAG: Pr Single Crystalline Films and LuAG:Sc Single Crystals
The scintillation properties of novel type of composite scintillator based on Lu3Al5O12:Pr (LuAG:Pr) single crystalline film (SCF) and LuAG:Sc substrate grown by the liquid-phase epitaxy method are considered in this work. The registration of α-particles and γ-quanta in such types of composites occurs by means of separation of the scintillation decay kinetics of SCF and crystal parts, respectively. Namely, under excitation by α-particles of 241Am (5.5 MeV) source and γ-quanta of 137Cs (662 keV) source, the large differences in the respective scintillation decay kinetics and decay time values tα and tγ are observed for the LuAG:Pr SCF/LuAG:Sc SC composite scintillator with various film thicknesses. Furthermore, the best tγ/tα ratio above 4.5 is achieved for such types of epitaxial structure with SCF and substrate thicknesses of 17 μm and about 0.5 mm, respectively. The development types of composite scintillators can be successfully applied for simultaneous registration of α-particles and γ-quanta in the mixed radiation fluxes.
Three-Layered Composite Scintillator Based on the Epitaxial Structures of YAG and LuAG Garnets Doped with Ce3+ and Sc3+ Impurities
In this study, we propose novel three-layer composite scintillators designed for the simultaneous detection of different ionizing radiation components. These scintillators are based on epitaxial structures of LuAG and YAG garnets, doped with Ce3+ and Sc3+ ions. Samples of these composite scintillators, containing YAG:Ce and LuAG:Ce single crystalline films with different thicknesses and LuAG:Sc single crystal substrates, were grown using the liquid phase epitaxy method from melt solutions based on PbO-B2O3 fluxes. The scintillation properties of the proposed composites, YAG:Ce film/LuAG:Sc film/LuAG:Ce crystal and YAG:Ce film/LuAG:Ce film/LuAG:Sc crystal, were investigated under excitation by radiation with α-particles from a 239Pu source, β-particles from 90Sr sources and γ-rays from a 137Cs source. Considering the properties of the mentioned composite scintillators, special attention was paid to the ability of simultaneous separation of the different components of mixed ionizing radiation containing the mentioned particles and quanta using scintillation decay kinetics. The differences in scintillation decay curves under α- and β-particle and γ-ray excitations were characterized using figure of merit (FOM) values at various scintillation decay intensity levels (1/e, 0.1, 0.05, 0.01).
Three-Layered Composite Scintillator Based on the Epitaxial Structures of YAG and LuAG Garnets Doped with Cesup.3+ and Scsup.3+ Impurities
In this study, we propose novel three-layer composite scintillators designed for the simultaneous detection of different ionizing radiation components. These scintillators are based on epitaxial structures of LuAG and YAG garnets, doped with Ce[sup.3+] and Sc[sup.3+] ions. Samples of these composite scintillators, containing YAG:Ce and LuAG:Ce single crystalline films with different thicknesses and LuAG:Sc single crystal substrates, were grown using the liquid phase epitaxy method from melt solutions based on PbO-B[sub.2]O[sub.3] fluxes. The scintillation properties of the proposed composites, YAG:Ce film/LuAG:Sc film/LuAG:Ce crystal and YAG:Ce film/LuAG:Ce film/LuAG:Sc crystal, were investigated under excitation by radiation with α-particles from a [sup.239]Pu source, β-particles from [sup.90]Sr sources and γ-rays from a [sup.137]Cs source. Considering the properties of the mentioned composite scintillators, special attention was paid to the ability of simultaneous separation of the different components of mixed ionizing radiation containing the mentioned particles and quanta using scintillation decay kinetics. The differences in scintillation decay curves under α- and β-particle and γ-ray excitations were characterized using figure of merit (FOM) values at various scintillation decay intensity levels (1/e, 0.1, 0.05, 0.01).
Scintillation Characteristics of the Single-Crystalline Film and Composite Film-Crystal Scintillators Based on the Ce3+-Doped (Lu,Gd)3(Ga,Al)5O12 Mixed Garnets under Alpha and Beta Particles, and Gamma Ray Excitations
The crystals of (Lu,Gd)3(Ga,Al)5O12 multicomponent garnets with high density ρ and effective atomic number Zeff are characterized by high scintillation efficiency and a light yield value up to 50,000 ph/MeV. During recent years, single-crystalline films and composite film/crystal scintillators were developed on the basis of these multicomponent garnets. These film/crystal composites are potentially applicable for particle identification by pulse shape discrimination due to the fact that α-particles excite only the film response, γ-radiation excites only the substrate response, and β-particles excite both to some extent. Here, we present new results regarding scintillating properties of selected (Lu,Gd)3(Ga,Al)5O12:Ce single-crystalline films under excitation by alpha and beta particles and gamma ray photons. We conclude that some of studied compositions are indeed suitable for testing in the proposed application, most notably Lu1.5Gd1.5Al3Ga2O12:Ce film on the GAGG:Ce substrate, exhibiting an α-particle-excited light yield of 1790–2720 ph/MeV and significantly different decay curves excited by α- and γ-radiation.
Composition Engineering of sub.5Osub.12:Ce Substrate Scintillators
The paper addresses the development of composite scintillation materials providing simultaneous real-time monitoring of different types of ionizing radiation (α-, β-particles, γ-rays) in mixed fluxes of particles and quanta. The detectors are based on composite heavy oxide scintillators consisting of a thin single-crystalline film and a bulk single-crystal substrate. The film and substrate respond to certain types of ionizing particles, forming together an all-in-one composite scintillator capable of distinguishing the type of radiation through the different time characteristics of the scintillation response. Here, we report the structure, composition, and scintillation properties under different ionizing radiations of (Lu,Gd,Tb)[sub.3](Al,Ga)[sub.5]O[sub.12]:Ce films deposited using liquid phase epitaxy onto Gd[sub.3](Al[sub.1−x]Ga[sub.x])[sub.5]O[sub.12]:Ce (GAGG:Ce) single-crystal substrates. The most promising compositions with the highest light yields and the largest differences in scintillation decay timing under irradiation with α-, β-particles, and γ-rays were selected. Such detectors are promising for environmental security purposes, medical tomography, and other radiation detection applications.
Three-Layered Composite Scintillator Based on the Epitaxial Structures of YAG and LuAG Garnets Doped with Ce 3+ and Sc 3+ Impurities
In this study, we propose novel three-layer composite scintillators designed for the simultaneous detection of different ionizing radiation components. These scintillators are based on epitaxial structures of LuAG and YAG garnets, doped with Ce and Sc ions. Samples of these composite scintillators, containing YAG:Ce and LuAG:Ce single crystalline films with different thicknesses and LuAG:Sc single crystal substrates, were grown using the liquid phase epitaxy method from melt solutions based on PbO-B O fluxes. The scintillation properties of the proposed composites, YAG:Ce film/LuAG:Sc film/LuAG:Ce crystal and YAG:Ce film/LuAG:Ce film/LuAG:Sc crystal, were investigated under excitation by radiation with α-particles from a Pu source, β-particles from Sr sources and γ-rays from a Cs source. Considering the properties of the mentioned composite scintillators, special attention was paid to the ability of simultaneous separation of the different components of mixed ionizing radiation containing the mentioned particles and quanta using scintillation decay kinetics. The differences in scintillation decay curves under α- and β-particle and γ-ray excitations were characterized using figure of merit (FOM) values at various scintillation decay intensity levels (1/e, 0.1, 0.05, 0.01).
Scintillation Characteristics of the Single-Crystalline Film and Composite Film-Crystal Scintillators Based on the Ce 3+ -Doped (Lu,Gd) 3 (Ga,Al) 5 O 12 Mixed Garnets under Alpha and Beta Particles, and Gamma Ray Excitations
The crystals of (Lu,Gd) (Ga,Al) O multicomponent garnets with high density ρ and effective atomic number Z are characterized by high scintillation efficiency and a light yield value up to 50,000 ph/MeV. During recent years, single-crystalline films and composite film/crystal scintillators were developed on the basis of these multicomponent garnets. These film/crystal composites are potentially applicable for particle identification by pulse shape discrimination due to the fact that α-particles excite only the film response, γ-radiation excites only the substrate response, and β-particles excite both to some extent. Here, we present new results regarding scintillating properties of selected (Lu,Gd) (Ga,Al) O :Ce single-crystalline films under excitation by alpha and beta particles and gamma ray photons. We conclude that some of studied compositions are indeed suitable for testing in the proposed application, most notably Lu Gd Al Ga O :Ce film on the GAGG:Ce substrate, exhibiting an α-particle-excited light yield of 1790-2720 ph/MeV and significantly different decay curves excited by α- and γ-radiation.
Scintillation Characteristics of the Single-Crystalline Film and Composite Film-Crystal Scintillators Based on the Cesup.3+-Doped sub.5Osub.12 Mixed Garnets under Alpha and Beta Particles, and Gamma Ray Excitations
The crystals of (Lu,Gd)[sub.3](Ga,Al)[sub.5]O[sub.12] multicomponent garnets with high density ρ and effective atomic number Z[sub.eff] are characterized by high scintillation efficiency and a light yield value up to 50,000 ph/MeV. During recent years, single-crystalline films and composite film/crystal scintillators were developed on the basis of these multicomponent garnets. These film/crystal composites are potentially applicable for particle identification by pulse shape discrimination due to the fact that α-particles excite only the film response, γ-radiation excites only the substrate response, and β-particles excite both to some extent. Here, we present new results regarding scintillating properties of selected (Lu,Gd)[sub.3](Ga,Al)[sub.5]O[sub.12]:Ce single-crystalline films under excitation by alpha and beta particles and gamma ray photons. We conclude that some of studied compositions are indeed suitable for testing in the proposed application, most notably Lu[sub.1.5]Gd[sub.1.5]Al[sub.3]Ga[sub.2]O[sub.12]:Ce film on the GAGG:Ce substrate, exhibiting an α-particle-excited light yield of 1790-2720 ph/MeV and significantly different decay curves excited by α- and γ-radiation.