Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
185
result(s) for
"Joannidis, Michael"
Sort by:
Pathophysiology of COVID-19-associated acute kidney injury
2021
Although respiratory failure and hypoxaemia are the main manifestations of COVID-19, kidney involvement is also common. Available evidence supports a number of potential pathophysiological pathways through which acute kidney injury (AKI) can develop in the context of SARS-CoV-2 infection. Histopathological findings have highlighted both similarities and differences between AKI in patients with COVID-19 and in those with AKI in non-COVID-related sepsis. Acute tubular injury is common, although it is often mild, despite markedly reduced kidney function. Systemic haemodynamic instability very likely contributes to tubular injury. Despite descriptions of COVID-19 as a cytokine storm syndrome, levels of circulating cytokines are often lower in patients with COVID-19 than in patients with acute respiratory distress syndrome with causes other than COVID-19. Tissue inflammation and local immune cell infiltration have been repeatedly observed and might have a critical role in kidney injury, as might endothelial injury and microvascular thrombi. Findings of high viral load in patients who have died with AKI suggest a contribution of viral invasion in the kidneys, although the issue of renal tropism remains controversial. An impaired type I interferon response has also been reported in patients with severe COVID-19. In light of these observations, the potential pathophysiological mechanisms of COVID-19-associated AKI may provide insights into therapeutic strategies.Acute kidney injury (AKI) is a common complication of COVID-19. This Review describes current understanding of the pathophysiology of COVID-19-associated AKI, examining potential mechanisms by which SARS-CoV-2 infection might induce direct and indirect effects on the kidney and non-specific factors, including haemodynamic changes and/or organ crosstalk, that may adversely influence kidney function.
Journal Article
Acute kidney injury in the critically ill: an updated review on pathophysiology and management
by
Joannidis, Michael
,
Ostermann, Marlies
,
Darmon, Michael
in
Anesthesiology
,
Biomarkers
,
Cardiovascular diseases
2021
Acute kidney injury (AKI) is now recognized as a heterogeneous syndrome that not only affects acute morbidity and mortality, but also a patient’s long-term prognosis. In this narrative review, an update on various aspects of AKI in critically ill patients will be provided. Focus will be on prediction and early detection of AKI (e.g., the role of biomarkers to identify high-risk patients and the use of machine learning to predict AKI), aspects of pathophysiology and progress in the recognition of different phenotypes of AKI, as well as an update on nephrotoxicity and organ cross-talk. In addition, prevention of AKI (focusing on fluid management, kidney perfusion pressure, and the choice of vasopressor) and supportive treatment of AKI is discussed. Finally, post-AKI risk of long-term sequelae including incident or progression of chronic kidney disease, cardiovascular events and mortality, will be addressed.
Journal Article
Sepsis-associated acute kidney injury: consensus report of the 28th Acute Disease Quality Initiative workgroup
by
Joannidis, Michael
,
Deep, Akash
,
Kane-Gill, Sandra L
in
Biomarkers
,
Kidney diseases
,
Pathophysiology
2023
Sepsis-associated acute kidney injury (SA-AKI) is common in critically ill patients and is strongly associated with adverse outcomes, including an increased risk of chronic kidney disease, cardiovascular events and death. The pathophysiology of SA-AKI remains elusive, although microcirculatory dysfunction, cellular metabolic reprogramming and dysregulated inflammatory responses have been implicated in preclinical studies. SA-AKI is best defined as the occurrence of AKI within 7 days of sepsis onset (diagnosed according to Kidney Disease Improving Global Outcome criteria and Sepsis 3 criteria, respectively). Improving outcomes in SA-AKI is challenging, as patients can present with either clinical or subclinical AKI. Early identification of patients at risk of AKI, or at risk of progressing to severe and/or persistent AKI, is crucial to the timely initiation of adequate supportive measures, including limiting further insults to the kidney. Accordingly, the discovery of biomarkers associated with AKI that can aid in early diagnosis is an area of intensive investigation. Additionally, high-quality evidence on best-practice care of patients with AKI, sepsis and SA-AKI has continued to accrue. Although specific therapeutic options are limited, several clinical trials have evaluated the use of care bundles and extracorporeal techniques as potential therapeutic approaches. Here we provide graded recommendations for managing SA-AKI and highlight priorities for future research.Sepsis-associated acute kidney injury (SA-AKI) is linked with poor outcomes in critically ill patients. This Consensus Statement from the Acute Disease Quality Initiative discusses the definition, epidemiology and pathophysiology of SA-AKI, fluid, resuscitation and extracorporeal therapies, and the role of biomarkers in risk stratification and diagnosis.
Journal Article
Biomarkers for prediction of renal replacement therapy in acute kidney injury: a systematic review and meta-analysis
by
Joannidis, Michael
,
Klein, Sebastian J
,
Brandtner, Anna K
in
Biomarkers
,
Clinical trials
,
Creatinine
2018
PurposeAcute kidney injury (AKI) frequently occurs in critically ill patients and often precipitates use of renal replacement therapy (RRT). However, the ideal circumstances for whether and when to start RRT remain unclear. We performed evidence synthesis of the available literature to evaluate the value of biomarkers to predict receipt of RRT for AKI.MethodsWe conducted a PRISMA-guided systematic review and meta-analysis including all trials evaluating biomarker performance for prediction of RRT in AKI. A systematic search was applied in MEDLINE, Embase, and CENTRAL databases from inception to September 2017. All studies reporting an area under the curve (AUC) for a biomarker to predict initiation of RRT were included.ResultsSixty-three studies comprising 15,928 critically ill patients (median per study 122.5 [31–1439]) met eligibility. Forty-one studies evaluating 13 different biomarkers were included. Of these biomarkers, neutrophil gelatinase-associated lipocalin (NGAL) had the largest body of evidence. The pooled AUCs for urine and blood NGAL were 0.720 (95% CI 0.638–0.803) and 0.755 (0.706–0.803), respectively. Blood creatinine and cystatin C had pooled AUCs of 0.764 (0.732–0.796) and 0.768 (0.729–0.807), respectively. For urine biomarkers, interleukin-18, cystatin C, and the product of tissue inhibitor of metalloproteinase-2 and insulin growth factor binding protein-7 showed pooled AUCs of 0.668 (0.606–0.729), 0.722 (0.575–0.868), and 0.857 (0.789–0.925), respectively.ConclusionThough several biomarkers showed promise and reasonable prediction of RRT use for critically ill patients with AKI, the strength of evidence currently precludes their routine use to guide decision-making on when to initiate RRT.
Journal Article
Lung–kidney interactions in critically ill patients: consensus report of the Acute Disease Quality Initiative (ADQI) 21 Workgroup
by
Joannidis, Michael
,
Klein, Sebastian J
,
Darmon, Michael
in
Crosstalk
,
Epidemiology
,
Extracorporeal membrane oxygenation
2020
BackgroundMulti-organ dysfunction in critical illness is common and frequently involves the lungs and kidneys, often requiring organ support such as invasive mechanical ventilation (IMV), renal replacement therapy (RRT) and/or extracorporeal membrane oxygenation (ECMO).MethodsA consensus conference on the spectrum of lung–kidney interactions in critical illness was held under the auspices of the Acute Disease Quality Initiative (ADQI) in Innsbruck, Austria, in June 2018. Through review and critical appraisal of the available evidence, the current state of research, and both clinical and research recommendations were described on the following topics: epidemiology, pathophysiology and strategies to mitigate pulmonary dysfunction among patients with acute kidney injury and/or kidney dysfunction among patients with acute respiratory failure/acute respiratory distress syndrome. Furthermore, emphasis was put on patients receiving organ support (RRT, IMV and/or ECMO) and its impact on lung and kidney function.ConclusionThe ADQI 21 conference found significant knowledge gaps about organ crosstalk between lung and kidney and its relevance for critically ill patients. Lung protective ventilation, conservative fluid management and early recognition and treatment of pulmonary infections were the only clinical recommendations with higher quality of evidence. Recommendations for research were formulated, targeting lung–kidney interactions to improve care processes and outcomes in critical illness.
Journal Article
Subphenotypes in acute kidney injury: a narrative review
by
Liu, Kathleen
,
Joannidis, Michael
,
Bhatraju, Pavan K.
in
Acute kidney injury
,
Acute Kidney Injury - therapy
,
Acute renal failure
2022
Acute kidney injury (AKI) is a frequently encountered syndrome especially among the critically ill. Current diagnosis of AKI is based on acute deterioration of kidney function, indicated by an increase in creatinine and/or reduced urine output. However, this syndromic definition encompasses a wide variety of distinct clinical features, varying pathophysiology, etiology and risk factors, and finally very different short- and long-term outcomes. Lumping all AKI together may conceal unique pathophysiologic processes specific to certain AKI populations, and discovering these AKI subphenotypes might help to develop targeted therapies tackling unique pathophysiological processes. In this review, we discuss the concept of AKI subphenotypes, current knowledge regarding both clinical and biomarker-driven subphenotypes, interplay with AKI subphenotypes and other ICU syndromes, and potential future and clinical implications.
Journal Article
Accumulation of hydroxyethyl starch in human and animal tissues: a systematic review
by
Joannidis, Michael
,
Wiedermann, Christian J.
in
Anesthesiology
,
Animals
,
Critical Care Medicine
2014
Purpose
To systematically review clinical and preclinical data on hydroxyethyl starch (HES) tissue storage.
Methods
MEDLINE (PubMed) was searched and abstracts were screened using defined criteria to identify articles containing original data on HES tissue accumulation.
Results
Forty-eight studies were included: 37 human studies with a total of 635 patients and 11 animal studies. The most frequent indication for fluid infusion was surgery accounting for 282 patients (45.9 %). HES localization in skin was shown by 17 studies, in kidney by 12, in liver by 8, and in bone marrow by 5. Additional sites of HES deposition were lymph nodes, spleen, lung, pancreas, intestine, muscle, trophoblast, and placental stroma. Among major organs the highest measured tissue concentration of HES was in the kidney. HES uptake into intracellular vacuoles was observed by 30 min after infusion. Storage was cumulative, increasing in proportion to dose, although in 15 % of patients storage and associated symptoms were demonstrated at the lowest cumulative doses (0.4 g kg
−1
). Some HES deposits were extremely long-lasting, persisting for 8 years or more in skin and 10 years in kidney. Pruritus associated with HES storage was described in 17 studies and renal dysfunction in ten studies. In one included randomized trial, HES infusion produced osmotic nephrosis-like lesions indicative of HES storage (
p
= 0.01) and also increased the need for renal replacement therapy (odds ratio, 9.50; 95 % confidence interval, 1.09–82.7;
p
= 0.02). The tissue distribution of HES was generally similar in animals and humans.
Conclusions
Tissue storage of HES is widespread, rapid, cumulative, frequently long-lasting, and potentially harmful.
Journal Article
Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study
by
Joannes-Boyau, Olivier
,
Joannidis, Michael
,
Cruz, Dinna N.
in
Acute Kidney Injury - epidemiology
,
Acute Kidney Injury - mortality
,
Aged
2015
Purpose
Current reports on acute kidney injury (AKI) in the intensive care unit (ICU) show wide variation in occurrence rate and are limited by study biases such as use of incomplete AKI definition, selected cohorts, or retrospective design. Our aim was to prospectively investigate the occurrence and outcomes of AKI in ICU patients.
Methods
The Acute Kidney Injury–Epidemiologic Prospective Investigation (AKI-EPI) study was an international cross-sectional study performed in 97 centers on patients during the first week of ICU admission. We measured AKI by Kidney Disease: Improving Global Outcomes (KDIGO) criteria, and outcomes at hospital discharge.
Results
A total of 1032 ICU patients out of 1802 [57.3 %; 95 % confidence interval (CI) 55.0–59.6] had AKI. Increasing AKI severity was associated with hospital mortality when adjusted for other variables; odds ratio of stage 1 = 1.679 (95 % CI 0.890–3.169;
p
= 0.109), stage 2 = 2.945 (95 % CI 1.382–6.276;
p
= 0.005), and stage 3 = 6.884 (95 % CI 3.876–12.228;
p
< 0.001). Risk-adjusted rates of AKI and mortality were similar across the world. Patients developing AKI had worse kidney function at hospital discharge with estimated glomerular filtration rate less than 60 mL/min/1.73 m
2
in 47.7 % (95 % CI 43.6–51.7) versus 14.8 % (95 % CI 11.9–18.2) in those without AKI,
p
< 0.001.
Conclusions
This is the first multinational cross-sectional study on the epidemiology of AKI in ICU patients using the complete KDIGO criteria. We found that AKI occurred in more than half of ICU patients. Increasing AKI severity was associated with increased mortality, and AKI patients had worse renal function at the time of hospital discharge. Adjusted risks for AKI and mortality were similar across different continents and regions.
Journal Article
Acute kidney injury 2016: diagnosis and diagnostic workup
by
Joannidis, Michael
,
Ostermann, Marlies
in
Acute renal failure
,
Complications and side effects
,
Critical care
2016
Acute kidney injury (AKI) is common and is associated with serious short- and long-term complications. Early diagnosis and identification of the underlying aetiology are essential to guide management. In this review, we outline the current definition of AKI and the potential pitfalls, and summarise the existing and future tools to investigate AKI in critically ill patients.
Journal Article
Clinical use of TIMP-2•IGFBP7 biomarker testing to assess risk of acute kidney injury in critical care: guidance from an expert panel
by
Engelman, Daniel T.
,
Joannidis, Michael
,
Binnall, Brian
in
Acute kidney failure
,
Acute kidney injury
,
Acute Kidney Injury - classification
2019
Background
The first FDA-approved test to assess risk for acute kidney injury (AKI), [TIMP-2]•[IGFBP7], is clinically available in many parts of the world, including the USA and Europe. We sought to understand how the test is currently being used clinically.
Methods
We invited a group of experts knowledgeable on the utility of this test for kidney injury to a panel discussion regarding the appropriate use of the test. Specifically, we wanted to identify which patients would be appropriate for testing, how the results are interpreted, and what actions would be taken based on the results of the test. We used a modified Delphi method to prioritize specific populations for testing and actions based on biomarker test results. No attempt was made to evaluate the evidence in support of various actions however.
Results
Our results indicate that clinical experts have developed similar practice patterns for use of the [TIMP-2]•[IGFBP7] test in Europe and North America. Patients undergoing major surgery (both cardiac and non-cardiac), those who were hemodynamically unstable, or those with sepsis appear to be priority patient populations for testing kidney stress. It was agreed that, in patients who tested positive, management of potentially nephrotoxic drugs and fluids would be a priority. Patients who tested negative may be candidates for “fast-track” protocols.
Conclusion
In the experience of our expert panel, biomarker testing has been a priority after major surgery, hemodynamic instability, or sepsis. Our panel members reported that a positive test prompts management of nephrotoxic drugs as well as fluids, while patients with negative results are considered to be excellent candidates for “fast-track” protocols.
Journal Article