Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
945 result(s) for "Johnson, Benjamin D."
Sort by:
All-sky dynamical response of the Galactic halo to the Large Magellanic Cloud
Gravitational interactions between the Large Magellanic Cloud (LMC) and the stellar and dark matter halo of the Milky Way are expected to give rise to disequilibrium phenomena in the outer Milky Way 1 – 7 . A local wake is predicted to trail the orbit of the LMC, and a large-scale overdensity is predicted to exist across a large area of the northern Galactic hemisphere. Here we report the detection of both the local wake and northern overdensity (hereafter the ‘collective response’) in a map of the Galaxy based on 1,301 stars at Galactocentric distances between 60 and 100 kiloparsecs. The location of the wake is in good agreement with an N -body simulation that includes the dynamical effect of the LMC on the Milky Way halo. The density contrast of the wake and collective response are stronger in the data than in the simulation. The detection of a strong local wake is independent evidence that the Magellanic clouds are on their first orbit around the Milky Way. The wake traces the path of the LMC, which will provide insight into the orbit of the LMC, which in turn is a sensitive probe of the mass of the LMC and the Milky Way. These data demonstrate that the outer halo is not in dynamical equilibrium, as is often assumed. The morphology and strength of the wake could be used to test the nature of dark matter and gravity. The detection of structure in the distribution of giant stars in the outer Galactic halo shows the substantial global impact of the Magellanic clouds on our Galaxy.
Enumerating Finitary Processes
We show how to efficiently enumerate a class of finite-memory stochastic processes using the causal representation of ϵ-machines. We characterize ϵ-machines in the language of automata theory and adapt a recent algorithm for generating accessible deterministic finite automata, pruning this over-large class down to that of ϵ-machines. As an application, we exactly enumerate topological ϵ-machines up to eight states and six-letter alphabets.
Star formation shut down by multiphase gas outflow in a galaxy at a redshift of 2.45
Large-scale outflows driven by supermassive black holes are thought to have a fundamental role in suppressing star formation in massive galaxies. However, direct observational evidence for this hypothesis is still lacking, particularly in the young universe where star-formation quenching is remarkably rapid 1 – 3 , thus requiring effective removal of gas 4 as opposed to slow gas heating 5 , 6 . Although outflows of ionized gas are frequently detected in massive distant galaxies 7 , the amount of ejected mass is too small to be able to suppress star formation 8 , 9 . Gas ejection is expected to be more efficient in the neutral and molecular phases 10 , but at high redshift these have only been observed in starbursts and quasars 11 , 12 . Here we report JWST spectroscopy of a massive galaxy experiencing rapid quenching at a redshift of 2.445. We detect a weak outflow of ionized gas and a powerful outflow of neutral gas, with a mass outflow rate that is sufficient to quench the star formation. Neither X-ray nor radio activity is detected; however, the presence of a supermassive black hole is suggested by the properties of the ionized gas emission lines. We thus conclude that supermassive black holes are able to rapidly suppress star formation in massive galaxies by efficiently ejecting neutral gas. JWST observations of a massive galaxy at a redshift of 2.45 show a powerful outflow of neutral gas, with a mass outflow rate that is sufficient to shut down star formation.
Spectroscopic confirmation of two luminous galaxies at a redshift of 14
The first observations of the James Webb Space Telescope (JWST) have revolutionized our understanding of the Universe by identifying galaxies at redshift z  ≈ 13 (refs. 1 , 2 – 3 ). In addition, the discovery of many luminous galaxies at Cosmic Dawn ( z  > 10) has suggested that galaxies developed rapidly, in apparent tension with many standard models 4 , 5 , 6 , 7 – 8 . However, most of these galaxies lack spectroscopic confirmation, so their distances and properties are uncertain. Here we present JWST Advanced Deep Extragalactic Survey–Near-Infrared Spectrograph spectroscopic confirmation of two luminous galaxies at z = 14.32 − 0.20 + 0.08 and z  = 13.90 ± 0.17. The spectra reveal ultraviolet continua with prominent Lyman-α breaks but no detected emission lines. This discovery proves that luminous galaxies were already in place 300 million years after the Big Bang and are more common than what was expected before JWST. The most distant of the two galaxies is unexpectedly luminous and is spatially resolved with a radius of 260 parsecs. Considering also the very steep ultraviolet slope of the second galaxy, we conclude that both are dominated by stellar continuum emission, showing that the excess of luminous galaxies in the early Universe cannot be entirely explained by accretion onto black holes. Galaxy formation models will need to address the existence of such large and luminous galaxies so early in cosmic history. JWST–NIRSpec spectroscopic confirmation of two luminous galaxies is presented, proving that luminous galaxies were already in place 300 million years after the Big Bang and are more common than what was expected before JWST.
A recently quenched galaxy 700 million years after the Big Bang
Local and low-redshift ( z  < 3) galaxies are known to broadly follow a bimodal distribution: actively star-forming galaxies with relatively stable star-formation rates and passive systems. These two populations are connected by galaxies in relatively slow transition. By contrast, theory predicts that star formation was stochastic at early cosmic times and in low-mass systems 1 – 4 . These galaxies transitioned rapidly between starburst episodes and phases of suppressed star formation, potentially even causing temporary quiescence—so-called mini-quenching events 5 , 6 . However, the regime of star-formation burstiness is observationally highly unconstrained. Directly observing mini-quenched galaxies in the primordial Universe is therefore of utmost importance to constrain models of galaxy formation and transformation 7 , 8 . Early quenched galaxies have been identified out to redshift z  < 5 (refs.  9 – 12 ) and these are all found to be massive ( M ⋆  > 10 10   M ⊙ ) and relatively old. Here we report a (mini-)quenched galaxy at z  = 7.3, when the Universe was only 700 Myr old. The JWST/NIRSpec spectrum is very blue ( U – V  = 0.16 ± 0.03 mag) but exhibits a Balmer break and no nebular emission lines. The galaxy experienced a short starburst followed by rapid quenching; its stellar mass (4–6 × 10 8   M ⊙ ) falls in a range that is sensitive to various feedback mechanisms, which can result in perhaps only temporary quenching. Analysis of the JWST/NIRSpec spectrum of the recently observed Lyman-break galaxy JADES-GS+53.15508-27.80178 revealed a redshift of z  = 7.3, a Balmer break and a complete absence of nebular emission lines, indicating that quenching occurred only 700 million years after the Big Bang.
Carbonaceous dust grains seen in the first billion years of cosmic time
Large dust reservoirs (up to approximately 10 8  M ⊙ ) have been detected 1 – 3 in galaxies out to redshift z  ≃ 8, when the age of the Universe was only about 600 Myr. Generating substantial amounts of dust within such a short timescale has proven challenging for theories of dust formation 4 , 5 and has prompted the revision of the modelling of potential sites of dust production 6 – 8 , such as the atmospheres of asymptotic giant branch stars in low-metallicity environments, supernova ejecta and the accelerated growth of grains in the interstellar medium. However, degeneracies between different evolutionary pathways remain when the total dust mass of galaxies is the only available observable. Here we report observations of the 2,175 Å dust attenuation feature, which is well known in the Milky Way and galaxies at z  ≲ 3 (refs. 9 – 11 ), in the near-infrared spectra of galaxies up to z  ≃ 7, corresponding to the first billion years of cosmic time. The relatively short timescale implied for the formation of carbonaceous grains giving rise to this feature 12 suggests a rapid production process, possibly in Wolf–Rayet stars or supernova ejecta. An (ultraviolet) dust attenuation feature at 2,175 Å, attributed to carbonaceous dust grains in the Milky Way and nearby galaxies, also exists in galaxies up to a redshift of 7.
Spectroscopic confirmation of four metal-poor galaxies at z = 10.3–13.2
Finding and characterizing the first galaxies that illuminated the early universe at cosmic dawn is pivotal to understand the physical conditions and the processes that led to the formation of the first stars. In the first few months of operations, imaging from the James Webb Space Telescope (JWST) has been used to identify tens of candidates of galaxies at redshift (z) greater than 10, less than 450 million years after the Big Bang. However, none of such candidates has yet been confirmed spectroscopically, leaving open the possibility that they are actually low-redshift interlopers. Here we present spectroscopic confirmation and analysis of four galaxies unambiguously detected at redshift 10.3 ≤ z ≤ 13.2, previously selected from JWST Near Infrared Camera imaging. The spectra reveal that these primeval galaxies are metal poor, have masses on the order of about 107–108 solar masses and young ages. The damping wings that shape the continuum close to the Lyman edge provide constraints on the neutral hydrogen fraction of the intergalactic medium from normal star-forming galaxies. These findings demonstrate the rapid emergence of the first generations of galaxies at cosmic dawn.As part of the JWST Advanced Deep Extragalactic Survey (JADES), NIRSpec has spectroscopically confirmed four young and metal-poor galaxies at redshift 10.3–13.2, from an early epoch of galaxy formation.
Modeling dust in a universe of galaxies
In this invited talk, we discuss the physics of the lifecycle of dust in the context of galaxy formation simulations. After outlining the basic physical processes, we apply algorithms for the formation, growth, and destruction of dust in the ISM to a state-of-the-art cosmological simulation to develop a model for the evolution of the dust to gas and dust to metals ratios in galaxies. We show that while modern simulations are able to match the observed dust mass function at redshift z = 0, most models underpredict the observed mass function at high-redshift ( z = 2). We then show the power of these techniques by expanding our model to include a spectrum of dust sizes, and make initial predictions for extinction laws in local galaxies.
An older, more quiescent universe from panchromatic SED fitting of the 3D-HST survey
Galaxies are complicated physical systems which obey complex scaling relationships; as a result, properties measured from broadband photometry are often highly correlated, degenerate, or both. Therefore, the accuracy of basic properties like stellar masses and star formation rates (SFRs) depend on the accuracy of many second-order galaxy properties, including star formation histories (SFHs), stellar metallicities, dust properties, and many others. Here, we re-assess measurements of galaxy stellar masses and SFRs using a 14-parameter physical model built in the Prospector Bayesian inference framework. We find that galaxies are ∼0.2 dex more massive and have ∼0.2 dex lower star formation rates than classic measurements. These measurements lower the observed cosmic star formation rate density and increase the observed buildup of stellar mass, finally bringing these two metrics into agreement at the factor-of-two level at 0.5 < z < 2.5.