Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
469
result(s) for
"Johnson, Melissa L"
Sort by:
Emerging therapies targeting the delta-like ligand 3 (DLL3) in small cell lung cancer
by
Bailis, Julie M.
,
Bebb, Gwyn
,
Yang, James Chih-Hsin
in
AMG 757
,
Antibody-drug conjugate
,
Antigen presentation
2023
Small cell lung cancer (SCLC) is an aggressive neuroendocrine carcinoma with a poor prognosis. Initial responses to standard-of-care chemo-immunotherapy are, unfortunately, followed by rapid disease recurrence in most patients. Current treatment options are limited, with no therapies specifically approved as third-line or beyond. Delta-like ligand 3 (DLL3), a Notch inhibitory ligand, is an attractive therapeutic target because it is overexpressed on the surface of SCLC cells with minimal to no expression on normal cells. Several DLL3-targeted therapies are being developed for the treatment of SCLC and other neuroendocrine carcinomas, including antibody-drug conjugates (ADCs), T-cell engager (TCE) molecules, and chimeric antigen receptor (CAR) therapies. First, we discuss the clinical experience with rovalpituzumab tesirine (Rova-T), a DLL3-targeting ADC, the development of which was halted due to a lack of efficacy in phase 3 studies, with a view to understanding the lessons that can be garnered for the rapidly evolving therapeutic landscape in SCLC. We then review preclinical and clinical data for several DLL3-targeting agents that are currently in development, including the TCE molecules—tarlatamab (formerly known as AMG 757), BI 764532, and HPN328—and the CAR T-cell therapy AMG 119. We conclude with a discussion of the future challenges and opportunities for DLL3-targeting therapies, including the utility of DLL3 as a biomarker for patient selection and disease progression, and the potential of rational combinatorial approaches that can enhance efficacy.
Journal Article
First-Line Atezolizumab plus Chemotherapy in Extensive-Stage Small-Cell Lung Cancer
by
Nishio, Makoto
,
Shames, David S
,
Ding, Beiying
in
Aged
,
Antibodies, Monoclonal - administration & dosage
,
Antibodies, Monoclonal - adverse effects
2018
Enhancing tumor-specific T-cell immunity by inhibiting programmed death ligand 1 (PD-L1)-programmed death 1 (PD-1) signaling has shown promise in the treatment of extensive-stage small-cell lung cancer. Combining checkpoint inhibition with cytotoxic chemotherapy may have a synergistic effect and improve efficacy.
We conducted this double-blind, placebo-controlled, phase 3 trial to evaluate atezolizumab plus carboplatin and etoposide in patients with extensive-stage small-cell lung cancer who had not previously received treatment. Patients were randomly assigned in a 1:1 ratio to receive carboplatin and etoposide with either atezolizumab or placebo for four 21-day cycles (induction phase), followed by a maintenance phase during which they received either atezolizumab or placebo (according to the previous random assignment) until they had unacceptable toxic effects, disease progression according to Response Evaluation Criteria in Solid Tumors, version 1.1, or no additional clinical benefit. The two primary end points were investigator-assessed progression-free survival and overall survival in the intention-to-treat population.
A total of 201 patients were randomly assigned to the atezolizumab group, and 202 patients to the placebo group. At a median follow-up of 13.9 months, the median overall survival was 12.3 months in the atezolizumab group and 10.3 months in the placebo group (hazard ratio for death, 0.70; 95% confidence interval [CI], 0.54 to 0.91; P=0.007). The median progression-free survival was 5.2 months and 4.3 months, respectively (hazard ratio for disease progression or death, 0.77; 95% CI, 0.62 to 0.96; P=0.02). The safety profile of atezolizumab plus carboplatin and etoposide was consistent with the previously reported safety profile of the individual agents, with no new findings observed.
The addition of atezolizumab to chemotherapy in the first-line treatment of extensive-stage small-cell lung cancer resulted in significantly longer overall survival and progression-free survival than chemotherapy alone. (Funded by F. Hoffmann-La Roche/Genentech; IMpower133 ClinicalTrials.gov number, NCT02763579 .).
Journal Article
Tiragolumab plus atezolizumab versus placebo plus atezolizumab as a first-line treatment for PD-L1-selected non-small-cell lung cancer (CITYSCAPE): primary and follow-up analyses of a randomised, double-blind, phase 2 study
2022
Targeted inhibition of the PD-L1–PD-1 pathway might be further amplified through combination of PD-1 or PD-L1 inhibitors with novel anti-TIGIT inhibitory immune checkpoint agents, such as tiragolumab. In the CITYSCAPE trial, we aimed to assess the preliminary efficacy and safety of tiragolumab plus atezolizumab (anti-PD-L1) therapy as first-line treatment for non-small-cell lung cancer (NSCLC).
CITYSCAPE is a phase 2, randomised, double-blind, placebo-controlled trial. Patients with chemotherapy-naive, PD-L1-positive (defined as a tumour proportion score of ≥1% by 22C3 immunohistochemistry pharmDx assay; Dako, Agilent Technologies, Santa Clara, CA, USA) recurrent or metastatic NSCLC with measurable disease, Eastern Cooperative Oncology Group performance status of 0 or 1, and no EGFR or ALK alterations were enrolled from 41 clinics in Europe, Asia, and the USA. Patients were randomly assigned (1:1), via an interactive voice or web-based response system, to receive tiragolumab (600 mg) plus atezolizumab (1200 mg) or placebo plus atezolizumab intravenously once every 3 weeks. Investigators and patients were masked to treatment assignment. The co-primary endpoints were investigator-assessed objective response rate and progression-free survival as per Response Evaluation Criteria in Solid Tumors version 1.1 in the intention-to-treat population, analysed after approximately 80 progression-free survival events had been observed in the primary population. Safety was assessed in all patients who received at least one dose of study drug. This trial is registered with ClinicalTrials.gov, NCT03563716, and is ongoing.
Patients were enrolled between Aug 10, 2018, and March 20, 2019. At data cutoff for the primary analysis (June 30, 2019), 135 of 275 patients assessed for eligibility were randomly assigned to receive tiragolumab plus atezolizumab (67 [50%]) or placebo plus atezolizumab (68 [50%]). In this primary analysis, after a median follow-up of 5·9 months (4·6–7·6, in the intention-to-treat population, 21 patients (31·3% [95% CI 19·5–43·2]) in the tiragolumab plus atezolizumab group versus 11 patients (16·2% [6·7–25·7]) in the placebo plus atezolizumab group had an objective response (p=0·031). Median progression-free survival was 5·4 months (95% CI 4·2–not estimable) in the tiragolumab plus atezolizumab group versus 3·6 months (2·7–4·4) in the placebo plus atezolizumab group (stratified hazard ratio 0·57 [95% CI 0·37–0·90], p=0·015). 14 (21%) patients receiving tiragolumab plus atezolizumab and 12 (18%) patients receiving placebo plus atezolizumab had serious treatment-related adverse events. The most frequently reported grade 3 or worse treatment-related adverse event was lipase increase (in six [9%] patients in the tiragolumab plus atezolizumab group vs two [3%] in the placebo plus atezolizumab group). Two treatment-related deaths (of pyrexia and infection) occurred in the tiragolumab plus atezolizumab group.
Tiragolumab plus atezolizumab showed a clinically meaningful improvement in objective response rate and progression-free survival compared with placebo plus atezolizumab in patients with chemotherapy-naive, PD-L1-positive, recurrent or metastatic NSCLC. Tiragolumab plus atezolizumab was well tolerated, with a safety profile generally similar to that of atezolizumab alone. These findings demonstrate that tiragolumab plus atezolizumab is a promising immunotherapy combination for the treatment of previously untreated, locally advanced unresectable or metastatic NSCLC.
F Hoffmann-La Roche and Genentech.
Journal Article
Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: a first-in-human, first-in-class, open-label, phase 1 study
by
Dylla, Scott J
,
Mathur, Deepan
,
Glisson, Bonnie S
in
Aged
,
Antibodies, Monoclonal, Humanized - therapeutic use
,
Antineoplastic Agents - therapeutic use
2017
Rovalpituzumab tesirine is a first-in-class antibody-drug conjugate directed against delta-like protein 3 (DLL3), a novel target identified in tumour-initiating cells and expressed in more than 80% of patients with small-cell lung cancer. We aimed to assess the safety and activity of rovalpituzumab tesirine in patients who progressed after one or more previous regimen.
We conducted a phase 1 open-label study at ten cancer centres in the USA. Eligible patients were aged 18 years or older and had histologically or cytologically confirmed small-cell lung cancer or large-cell neuroendocrine tumours with progressive measurable disease (according to Response Evaluation Criteria in Solid Tumors [RECIST], version 1.1) previously treated with one or two chemotherapeutic regimens, including a platinum-based regimen. We assigned patients to dose-escalation or expansion cohorts, ranging from 0·05 mg/kg to 0·8 mg/kg rovalpituzumab tesirine intravenously every 3 weeks or every 6 weeks, followed by investigation of the dose schedules 0·3 mg/kg and 0·4 mg/kg every 6 weeks and 0·2 mg/kg every 3 weeks. Primary objectives were to assess the safety of rovalpituzumab tesirine, including the maximum tolerated dose and dose-limiting toxic effects. The primary activity endpoint was objective response by intention-to-treat analysis. This study is registered with ClinicalTrials.gov, number NCT01901653. The study is closed to enrolment; this report focuses on the cohort with small-cell lung cancer.
Between July 22, 2013, and Aug 10, 2015, 82 patients were enrolled, including 74 patients with small-cell lung cancer and eight with large-cell neuroendocrine carcinoma, all of whom received at least one dose of rovalpituzumab tesirine. Dose-limiting toxic effects of rovalpituzumab tesirine occurred at a dose of 0·8 mg/kg every 3 weeks, including grade 4 thrombocytopenia (in two of two patients at that dose level) and grade 4 liver function test abnormalities (in one patient). The most frequent grade 3 or worse treatment-related adverse events in 74 patients with small-cell lung cancer were thrombocytopenia (eight [11%]), pleural effusion (six [8%]), and increased lipase (five [7%]). Drug-related serious adverse events occurred in 28 (38%) of 74 patients. The maximum tolerated dose of rovalpituzumab tesirine was 0·4 mg/kg every 3 weeks; the recommended phase 2 dose and schedule is 0·3 mg/kg every 6 weeks. At active doses of rovalpituzumab tesirine (0·2 mg/kg or 0·4 mg/kg every 3 weeks or 0·3 mg/kg or 0·4 mg/kg every 6 weeks), 11 (18%) of 60 assessable patients had a confirmed objective response. 11 (18%) of 60 assessable patients had a confirmed objective response, including ten (38%) of 26 patients confirmed to have high DLL3 expression (expression in 50% or more of tumour cells).
Rovalpituzumab tesirine shows encouraging single-agent antitumour activity with a manageable safety profile. Further development of rovalpituzumab tesirine in DLL3-expressing malignant diseases is warranted.
Stemcentrx Inc.
Journal Article
Safety, tolerability, and pharmacokinetics of Aurora kinase B inhibitor AZD2811: a phase 1 dose-finding study in patients with advanced solid tumours
by
Kennedy, Caroline
,
Jones, Suzanne
,
Fabbri, Giulia
in
Aurora kinase
,
Colony-stimulating factor
,
Enzyme inhibitors
2023
BackgroundAZD2811 is a potent, selective Aurora kinase B inhibitor. We report the dose-escalation phase of a first-in-human study assessing nanoparticle-encapsulated AZD2811 in advanced solid tumours.MethodsAZD2811 was administered in 12 dose-escalation cohorts (2-h intravenous infusion; 15‒600 mg; 21-/28-day cycles) with granulocyte colony-stimulating factor (G-CSF) at higher doses. The primary objective was determining safety and maximum tolerated/recommended phase 2 dose (RP2D).ResultsFifty-one patients received AZD2811. Drug exposure was sustained for several days post-dose. The most common AZD2811-related adverse events (AEs) were fatigue (27.3%) at ≤200 mg/cycle and neutropenia (37.9%) at ≥400 mg/cycle. Five patients had dose-limiting toxicities: grade (G)4 decreased neutrophil count (n = 1, 200 mg; Days 1, 4; 28-day cycle); G4 decreased neutrophil count and G3 stomatitis (n = 1 each, both 400 mg; Day 1; 21-day cycle); G3 febrile neutropenia and G3 fatigue (n = 1 each, both 600 mg; Day 1; 21-day cycle +G-CSF). RP2D was 500 mg; Day 1; 21-day cycle with G-CSF on Day 8. Neutropenia/neutrophil count decrease were on-target AEs. Best overall responses were partial response (n = 1, 2.0%) and stable disease (n = 23, 45.1%).ConclusionsAt RP2D, AZD2811 was tolerable with G-CSF support. Neutropenia was a pharmacodynamic biomarker.Clinical trial registrationNCT02579226.
Journal Article
Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of lung cancer and mesothelioma
by
Forde, Patrick M
,
Neal, Joel W
,
Sagorsky, Sarah
in
Cancer
,
Cancer therapies
,
Carcinoma, Non-Small-Cell Lung - drug therapy
2022
Immunotherapy has transformed lung cancer care in recent years. In addition to providing durable responses and prolonged survival outcomes for a subset of patients with heavily pretreated non-small cell lung cancer (NSCLC), immune checkpoint inhibitors (ICIs)— either as monotherapy or in combination with other ICIs or chemotherapy—have demonstrated benefits in first-line therapy for advanced disease, the neoadjuvant and adjuvant settings, as well as in additional thoracic malignancies such as small cell lung cancer (SCLC) and mesothelioma. Challenging questions remain, however, on topics including therapy selection, appropriate biomarker-based identification of patients who may derive benefit, the use of immunotherapy in special populations such as people with autoimmune disorders, and toxicity management. Patient and caregiver education and support for quality of life (QOL) is also important to attain maximal benefit with immunotherapy. To provide guidance to the oncology community on these and other important concerns, the Society for Immunotherapy of Cancer (SITC) convened a multidisciplinary panel of experts to develop a clinical practice guideline (CPG). This CPG represents an update to SITC’s 2018 publication on immunotherapy for the treatment of NSCLC, and is expanded to include recommendations on SCLC and mesothelioma. The Expert Panel drew on the published literature as well as their clinical experience to develop recommendations for healthcare professionals on these important aspects of immunotherapeutic treatment for lung cancer and mesothelioma, including diagnostic testing, treatment planning, immune-related adverse events, and patient QOL considerations. The evidence- and consensus-based recommendations in this CPG are intended to give guidance to cancer care providers using immunotherapy to treat patients with lung cancer or mesothelioma.
Journal Article
Sotorasib versus docetaxel for previously treated non-small-cell lung cancer with KRASG12C mutation: a randomised, open-label, phase 3 trial
2023
Sotorasib is a specific, irreversible inhibitor of the GTPase protein, KRASG12C. We compared the efficacy and safety of sotorasib with a standard-of-care treatment in patients with non-small-cell lung cancer (NSCLC) with the KRASG12C mutation who had been previously treated with other anticancer drugs.
We conducted a randomised, open-label phase 3 trial at 148 centres in 22 countries. We recruited patients aged at least 18 years with KRASG12C-mutated advanced NSCLC, who progressed after previous platinum-based chemotherapy and a PD-1 or PD-L1 inhibitor. Key exclusion criteria included new or progressing untreated brain lesions or symptomatic brain lesions, previously identified oncogenic driver mutation other than KRASG12C for which an approved therapy is available (eg EGFR or ALK), previous treatment with docetaxel (neoadjuvant or adjuvant docetaxel was allowed if the tumour did not progress within 6 months after the therapy was terminated), previous treatment with a direct KRASG12C inhibitor, systemic anticancer therapy within 28 days of study day 1, and therapeutic or palliative radiation therapy within 2 weeks of treatment initiation. We randomly assigned (1:1) patients to oral sotorasib (960 mg once daily) or intravenous docetaxel (75 mg/m2 once every 3 weeks) in an open-label manner using interactive response technology. Randomisation was stratified by number of previous lines of therapy in advanced disease (1 vs 2 vs >2), ethnicity (Asian vs non-Asian), and history of CNS metastases (present or absent). Treatment continued until an independent central confirmation of disease progression, intolerance, initiation of another anticancer therapy, withdrawal of consent, or death, whichever occurred first. The primary endpoint was progression-free survival, which was assessed by a blinded, independent central review in the intention-to-treat population. Safety was assessed in all treated patients. This trial is registered at ClinicalTrials.gov, NCT04303780, and is active but no longer recruiting.
Between June 4, 2020, and April 26, 2021, 345 patients were randomly assigned to receive sotorasib (n=171 [50%]) or docetaxel (n=174 [50%]). 169 (99%) patients in the sotorasib group and 151 (87%) in the docetaxel group received at least one dose. After a median follow-up of 17·7 months (IQR 16·4–20·1), the study met its primary endpoint of a statistically significant increase in the progression-free survival for sotorasib, compared with docetaxel (median progression-free survival 5·6 months [95% CI 4·3–7·8] vs 4·5 months [3·0–5·7]; hazard ratio 0·66 [0·51–0·86]; p=0·0017). Sotorasib was well tolerated, with fewer grade 3 or worse (n=56 [33%] vs n=61 [40%]) and serious treatment-related adverse events compared with docetaxel (n=18 [11%] vs n=34 [23%]). For sotorasib, the most common treatment-related adverse events of grade 3 or worse were diarrhoea (n= 20 [12%]), alanine aminotransferase increase (n=13 [8%]), and aspartate aminotransferase increase (n=9 [5%]). For docetaxel, the most common treatment-related adverse events of grade 3 or worse were neutropenia (n=13 [9%]), fatigue (n=9 [6%]), and febrile neutropenia (n=8 [5%]).
Sotorasib significantly increased progression-free survival and had a more favourable safety profile, compared with docetaxel, in patients with advanced NSCLC with the KRASG12C mutation and who had been previously treated with other anticancer drugs.
Amgen.
Journal Article
A phase Ib study of utomilumab (PF-05082566) in combination with mogamulizumab in patients with advanced solid tumors
2019
BackgroundExpressed on activated T and natural killer cells, 4-1BB/CD137 is a costimulatory receptor that signals a series of events resulting in cytokine secretion and enhanced effector function. Targeting 4-1BB/CD137 with agonist antibodies has been associated with tumor reduction and antitumor immunity. C-C chemokine receptor 4 (CCR4) is highly expressed in various solid tumor indications and associated with poor prognosis. This phase Ib, open-label study in patients with advanced solid tumors assessed the safety, efficacy, pharmacokinetics, and pharmacodynamics of utomilumab (PF-05082566), a human monoclonal antibody (mAb) agonist of the T-cell costimulatory receptor 4-1BB/CD137, in combination with mogamulizumab, a humanized mAb targeting CCR4 reported to deplete subsets of regulatory T cells (Tregs).MethodsUtomilumab 1.2–5 mg/kg or 100 mg flat dose every 4 weeks plus mogamulizumab 1 mg/kg (weekly in Cycle 1 followed by biweekly in Cycles ≥2) was administered intravenously to 24 adults with solid tumors. Blood was collected pre- and post-dose for assessment of drug pharmacokinetics, immunogenicity, and pharmacodynamic markers. Baseline tumor biopsies from a subset of patients were also analyzed for the presence of programmed cell death-ligand 1 (PD-L1), CD8, FoxP3, and 4-1BB/CD137. Radiologic tumor assessments were conducted at baseline and on treatment every 8 weeks.ResultsNo dose-limiting toxicities occurred and the maximum tolerated dose was determined to be at least 2.4 mg/kg per the time-to-event continual reassessment method. No serious adverse events related to either treatment were observed; anemia was the only grade 3 non-serious adverse event related to both treatments. Utomilumab systemic exposure appeared to increase with dose. One patient with PD-L1–refractory squamous lung cancer achieved a best overall response of partial response and 9 patients had a best overall response of stable disease. No patients achieved complete response. Objective response rate was 4.2% (95% confidence interval: 0.1–21.1%) per RECIST 1.1. Depletion of Tregs in peripheral blood was accompanied by evidence of T-cell expansion as assessed by T-cell receptor sequence analysis.ConclusionsThe combination of utomilumab/mogamulizumab was safe and tolerable, and may be suitable for evaluation in settings where CCR4-expressing Tregs are suppressing anticancer immunity.Trial registrationClinicalTrials.gov identifier: NCT02444793.
Journal Article
Adagrasib in Non–Small-Cell Lung Cancer Harboring a KRASG12C Mutation
2022
Adagrasib produced responses in 43% of previously treated patients with non–small-cell lung cancer containing a
KRAS
G12C
mutation, with median overall survival of 12.6 months. Regressions of stable brain metastases were noted in one third of evaluable patients. Gastrointestinal toxic effects dominated the adverse events, but fewer than 7% of patients stopped therapy.
Journal Article
Tarlatamab for Patients with Previously Treated Small-Cell Lung Cancer
by
Sands, Jacob
,
Handzhiev, Sabin
,
Juan-Vidal, Oscar
in
Administration, Intravenous
,
Adverse events
,
Antineoplastic Agents - administration & dosage
2023
Tarlatamab, a bispecific T-cell engager immunotherapy targeting delta-like ligand 3 and CD3, showed promising antitumor activity in a phase 1 trial in patients with previously treated small-cell lung cancer.
In this phase 2 trial, we evaluated the antitumor activity and safety of tarlatamab, administered intravenously every 2 weeks at a dose of 10 mg or 100 mg, in patients with previously treated small-cell lung cancer. The primary end point was objective response (complete or partial response), as assessed by blinded independent central review according to the Response Evaluation Criteria in Solid Tumors, version 1.1.
Overall, 220 patients received tarlatamab; patients had previously received a median of two lines of treatment. Among patients evaluated for antitumor activity and survival, the median follow-up was 10.6 months in the 10-mg group and 10.3 months in the 100-mg group. An objective response occurred in 40% (97.5% confidence interval [CI], 29 to 52) of the patients in the 10-mg group and in 32% (97.5% CI, 21 to 44) of those in the 100-mg group. Among patients with an objective response, the duration of response was at least 6 months in 59% (40 of 68 patients). Objective responses at the time of data cutoff were ongoing in 22 of 40 patients (55%) in the 10-mg group and in 16 of 28 patients (57%) in the 100-mg group. The median progression-free survival was 4.9 months (95% CI, 2.9 to 6.7) in the 10-mg group and 3.9 months (95% CI, 2.6 to 4.4) in the 100-mg group; the estimates of overall survival at 9 months were 68% and 66% of patients, respectively. The most common adverse events were cytokine-release syndrome (in 51% of the patients in the 10-mg group and in 61% of those in the 100-mg group), decreased appetite (in 29% and 44%, respectively), and pyrexia (in 35% and 33%). Cytokine-release syndrome occurred primarily during treatment cycle 1, and events in most of the patients were grade 1 or 2 in severity. Grade 3 cytokine-release syndrome occurred less frequently in the 10-mg group (in 1% of the patients) than in the 100-mg group (in 6%). A low percentage of patients (3%) discontinued tarlatamab because of treatment-related adverse events.
Tarlatamab, administered as a 10-mg dose every 2 weeks, showed antitumor activity with durable objective responses and promising survival outcomes in patients with previously treated small-cell lung cancer. No new safety signals were identified. (Funded by Amgen; DeLLphi-301 ClinicalTrials.gov number, NCT05060016.).
Journal Article