Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
7
result(s) for
"Johzuka-Hisatomi, Yasuyo"
Sort by:
Homologous recombination-mediated gene targeting in the liverwort Marchantia polymorpha L
by
Johzuka-Hisatomi, Yasuyo
,
Ishida, Sakiko
,
Iida, Shigeru
in
631/1647/1513/1967
,
631/208/2491/2046
,
631/449/1659
2013
The liverwort
Marchantia polymorpha
is an emerging model organism on account of its ideal characteristics for molecular genetics in addition to occupying a crucial position in the evolution of land plants. Here we describe a method for gene targeting by applying a positive/negative selection system for reduction of non-homologous random integration to an efficient
Agrobacterium
-mediated transformation system using
M. polymorpha
sporelings. The targeting efficiency was evaluated by knocking out the
NOP1
gene, which impaired air-chamber formation. Homologous recombination was observed in about 2% of the thalli that passed the positive/negative selection. With the advantage of utilizing the haploid gametophytic generation, this strategy should facilitate further molecular genetic analysis of
M. polymorpha
, in which many of the mechanisms found in land plants are conserved, yet in a less complex form.
Journal Article
MET1b gene encoding a maintenance DNA methyltransferase is indispensable for normal development in rice
by
Yamauchi, Takaki
,
Nakamura, Ikuo
,
Johzuka-Hisatomi, Yasuyo
in
Arabidopsis
,
Biochemistry
,
Biomedical and Life Sciences
2014
While Arabidopsis bears only one MET1 gene encoding the DNA methyltransferase that is mainly responsible for maintaining CG methylation after DNA replication, rice carries two MET1 genes, MET1a and MET1b, expressed in actively replicating and dividing cells, and MET1b is more abundantly expressed than is MET1a. A met1a null mutant displayed no overt phenotypes, implying that MET1b must play a major role in the maintenance DNA methylation. Here, we employed two met1b null mutants, generated by homologous recombination-mediated knock-in targeting and insertion of endogenous retrotransposon Tos17. These MET1a/MET1a met1b/met1b homozygotes exhibited abnormal seed phenotypes, which is associated with either viviparous germination or early embryonic lethality. They also displayed decreased levels of DNA methylation at repetitive CentO sequences and at the FIE1 gene locus in the embryos. In addition, independently isolated knock-in-targeted plants, in which the promoterless GUS reporter gene was fused with the endogenous MET1b promoter, showed the reproducible, dosage-dependent, and spatiotemporal expression patterns of GUS. The genotyping analysis of selfed progeny of heterozygous met1a met1b null mutants indicated that weakly active MET1a seems to serve as a genetic backup mechanism in rice met1b gametophytes, although the stochastic and uncoordinated activation of epigenetic backup mechanisms occurred less efficiently in the met1b homozygotes of rice than in the met1 homozygotes of Arabidopsis. Moreover, passive depletion of CG methylation during the postmeiotic DNA replication in the haploid nuclei of the met1a met1b gametophytes in rice results in early embryonic lethality. This situation somewhat resembles that of the met1 gametophytes in Arabidopsis.
Journal Article
Gene Targeting by Homologous Recombination as a Biotechnological Tool for Rice Functional Genomics
by
Saitoh, Miho
,
Johzuka-Hisatomi, Yasuyo
,
Asao, Hisayo
in
alcohol dehydrogenase
,
Alcohol Dehydrogenase - genetics
,
Biological and medical sciences
2007
The modification of an endogenous gene into a designed sequence by homologous recombination, termed gene targeting (GT), has broad implications for basic and applied research. Rice (Oryza sativa), with a sequenced genome of 389 Mb, is one of the most important crops and a model plant for cereals, and the single-copy gene Waxy on chromosome 6 has been modified with a frequency of 1% per surviving callus by GT using a strong positive-negative selection. Because the strategy is independent of gene-specific selection or screening, it is in principle applicable to any gene. However, a gene in the multigene family or a gene carrying repetitive sequences may preclude efficient homologous recombination-promoted GT due to the occurrence of ectopic recombination. Here, we describe an improved GT procedure whereby we obtained nine independent transformed calli having the alcohol dehydrogenase2 (Adh2) gene modified with a frequency of approximately 2% per surviving callus and subsequently isolated eight fertile transgenic plants without the concomitant occurrence of undesirable ectopic events, even though the rice genome carries four Adh genes, including a newly characterized Adh3 gene, and a copy of highly repetitive retroelements is present adjacent to the Adh2 gene. The results indicate that GT using a strong positive-negative selection can be widely applicable to functional genomics in rice and presumably in other higher plants.
Journal Article
molecular basis of incomplete dominance at the A locus of CHS-D in the common morning glory, Ipomoea purpurea
by
Iida, Shigeru
,
Johzuka-Hisatomi, Yasuyo
,
Noguchi, Hiroshi
in
Acyltransferases - genetics
,
Alleles
,
Anthocyanin pigmentation
2011
The mutable a flaked (a f ) allele at the A locus of the common morning glory (Ipomoea purpurea) confers incomplete dominance in flower pigmentation and is caused by insertion of the DNA transposon Tip100 into CHS-D, which encodes chalcone synthase and is required for anthocyanin biosynthesis. Levels of CHS-D transcripts, CHS-D protein, and anthocyanin pigment in heterozygous flowers were about half that in homozygous flowers, indicating that dosage-dependent expression of CHS-D is the primary cause of the observed incomplete dominance. This contrasts with the Nivea locus in snapdragon (Antirrhinum majus) in which incomplete dominance is caused by semi-dominant CHS alleles.
Journal Article
Characterization of autonomous Dart1 transposons belonging to the hAT superfamily in rice
by
Takahara, Hiroyuki
,
Qian, Qian
,
Johzuka-Hisatomi, Yasuyo
in
Animal Genetics and Genomics
,
Arabidopsis
,
Arabidopsis - genetics
2009
An endogenous 0.6-kb rice DNA transposon, nDart1-0, was found as an active nonautonomous element in a mutable virescent line, pyl-v, displaying leaf variegations. Here, we demonstrated that the active autonomous element aDart in pyl-v corresponds to Dart1-27 on chromosome 6 in Nipponbare, which carries no active aDart elements, and that aDart and Dart1-27 are identical in their sequences and chromosomal locations, indicating that Dart1-27 is epigenetically silenced in Nipponbare. The identification of aDart in pyl-v was first performed by map-based cloning and by detection of the accumulated transposase transcripts. Subsequently, various transposition activities of the cloned Dart1-27 element from Nipponbare were demonstrated in Arabidopsis. Dart1-27 in Arabidopsis was able to excise nDart1-0 and Dart1-27 from cloned sites, generating footprints, and to integrate into new sites, generating 8-bp target site duplications. In addition to Dart1-27, Nipponbare contains 37 putative autonomous Dart1 elements because their putative transposase genes carry no apparent nonsense or frameshift mutations. Of these, at least four elements were shown to become active aDart elements in transgenic Arabidopsis plants, even though considerable sequence divergence arose among their transposases. Thus, these four Dart1 elements and Dart1-27 in Nipponbare must be potential autonomous elements silenced epigenetically. The regulatory and evolutionary implications of the autonomous Dart1 elements and the development of an efficient transposon-tagging system in rice are discussed.
Journal Article
Gene Targeting by Homologous Recombination as a Biotechnological Tool for Rice Functional Genomics1WOA
by
Saitoh, Miho
,
Johzuka-Hisatomi, Yasuyo
,
Asao, Hisayo
in
Biotechnology
,
Rice
,
Transgenic plants
2007
The modification of an endogenous gene into a designed sequence by homologous recombination, termed gene targeting (GT), has broad implications for basic and applied research. Rice (Oryza sativa), with a sequenced genome of 389 Mb, is one of the most important crops and a model plant for cereals, and the single-copy gene Waxy on chromosome 6 has been modified with a frequency of 1% per surviving callus by GT using a strong positive-negative selection. Because the strategy is independent of gene-specific selection or screening, it is in principle applicable to any gene. However, a gene in the multigene family or a gene carrying repetitive sequences may preclude efficient homologous recombination-promoted GT due to the occurrence of ectopic recombination. Here, we describe an improved GT procedure whereby we obtained nine independent transformed calli having the alcohol dehydrogenase2 (Adh2) gene modified with a frequency of approximately 2% per surviving callus and subsequently isolated eight fertile transgenic plants without the concomitant occurrence of undesirable ectopic events, even though the rice genome carries four Adh genes, including a newly characterized Adh3 gene, and a copy of highly repetitive retroelements is present adjacent to the Adh2 gene. The results indicate that GT using a strong positive-negative selection can be widely applicable to functional genomics in rice and presumably in other higher plants.
Journal Article