Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
29
result(s) for
"Joly, Jean-Stephane"
Sort by:
Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR
by
Schönig, Kai
,
Mianné, Joffrey
,
Joly, Jean-Stephane
in
Algorithms
,
Animal Genetics and Genomics
,
Bioinformatics
2016
Background
The success of the CRISPR/Cas9 genome editing technique depends on the choice of the guide RNA sequence, which is facilitated by various websites. Despite the importance and popularity of these algorithms, it is unclear to which extent their predictions are in agreement with actual measurements.
Results
We conduct the first independent evaluation of CRISPR/Cas9 predictions. To this end, we collect data from eight SpCas9 off-target studies and compare them with the sites predicted by popular algorithms. We identify problems in one implementation but found that sequence-based off-target predictions are very reliable, identifying most off-targets with mutation rates superior to 0.1 %, while the number of false positives can be largely reduced with a cutoff on the off-target score. We also evaluate on-target efficiency prediction algorithms against available datasets. The correlation between the predictions and the guide activity varied considerably, especially for zebrafish. Together with novel data from our labs, we find that the optimal on-target efficiency prediction model strongly depends on whether the guide RNA is expressed from a U6 promoter or transcribed in vitro. We further demonstrate that the best predictions can significantly reduce the time spent on guide screening.
Conclusions
To make these guidelines easily accessible to anyone planning a CRISPR genome editing experiment, we built a new website (
http://crispor.org
) that predicts off-targets and helps select and clone efficient guide sequences for more than 120 genomes using different Cas9 proteins and the eight efficiency scoring systems evaluated here.
Journal Article
A novel brain tumour model in zebrafish reveals the role of YAP activation in MAPK/PI3K induced malignant growth
by
Mayrhofer, Marie
,
Joly, Jean-Stephane
,
Affaticati, Pierre
in
Amino Acyl-tRNA Synthetases - genetics
,
Animals
,
Brain cancer
2017
Somatic mutations activating MAPK/PI3K signalling play a pivotal role in both tumours and brain developmental disorders. We developed a zebrafish model of brain tumour based on somatic expression of oncogenes that activate MAPK/PI3K signalling in neural progenitor cells. HRASV12 was the most effective in inducing both heterotopia and invasive tumours. Tumours, but not heterotopias, require persistent activation of phospho‑(p)ERK and express a gene signature similar to the mesenchymal glioblastoma subtype, with a strong YAP component. Application of a 8-gene signature to human brain tumours establishes that YAP activation distinguishes between mesenchymal glioblastoma and low grade glioma in a wide TCGA sample set including gliomas and glioblastomas (GBMs). This suggests that the activation of YAP may be an important event in brain tumour development, promoting malignant versus benign brain lesions. Indeed, co-expression of dominant active YAP (YAPS5A) and HRASV12 abolishes the development of heterotopias and leads to the sole development of aggressive tumours. Thus, we have developed a model proving that neurodevelopmental disorders and brain tumours may originate from the same somatic mutations activating oncogenes and established that YAP activation is a hallmark of malignant brain tumours.
Journal Article
Molecular evolution of peptidergic signaling systems in bilaterians
2013
Peptide hormones and their receptors are widespread in metazoans, but the knowledge we have of their evolutionary relationships remains unclear. Recently, accumulating genome sequences from many different species have offered the opportunity to reassess the relationships between protostomian and deuterostomian peptidergic systems (PSs). Here we used sequences of all human rhodopsin and secretin-type G protein-coupled receptors as bait to retrieve potential homologs in the genomes of 15 bilaterian species, including nonchordate deuterostomian and lophotrochozoan species. Our phylogenetic analysis of these receptors revealed 29 well-supported subtrees containing mixed sets of protostomian and deuterostomian sequences. This indicated that many vertebrate and arthropod PSs that were previously thought to be phyla specific are in fact of bilaterian origin. By screening sequence databases for potential peptides, we then reconstructed entire bilaterian peptide families and showed that protostomian and deuterostomian peptides that are ligands of orthologous receptors displayed some similarity at the level of their primary sequence, suggesting an ancient coevolution between peptide and receptor genes. In addition to shedding light on the function of human G protein-coupled receptor PSs, this work presents orthology markers to study ancestral neuron types that were probably present in the last common bilaterian ancestor.
Journal Article
The trouble with collective nouns for genome editing
by
Joly, Jean Stéphane
,
Wells, Sara
in
Abbreviations as Topic
,
Animal Genetics and Genomics
,
Animals
2017
We should start as we mean to go on and try to avoid the confusion most of us experience when bombarded with acronyms with overstated significations. You will be familiar with the situation, you are in a seminar or a meeting and someone who has been using a set of acronyms for years, includes them in sentence after sentence that has you lost because you don’t know what some or most of them stand for. Even worse when scientists start making verbs out of them, CRISPR seems to have fallen into this category; how many of us have heard someone asking if a mutation can be CRISPRed! Does it matter though? We are all familiar with informal language in scientific talks and discussions which is replaced by more formal dialect when research is published or presented to the general public. However, when an ill-defined acronym slips outside of laboratory chatter and is widely recognised by the general public, we need to proceed with caution to avoid misinterpretation and misunderstandings.
Journal Article
A cis-Regulatory Signature for Chordate Anterior Neuroectodermal Genes
by
Haeussler, Maximilian
,
Jaszczyszyn, Yan
,
Christiaen, Lionel
in
Animals
,
Base Sequence
,
Binding Sites
2010
One of the striking findings of comparative developmental genetics was that expression patterns of core transcription factors are extraordinarily conserved in bilaterians. However, it remains unclear whether cis-regulatory elements of their target genes also exhibit common signatures associated with conserved embryonic fields. To address this question, we focused on genes that are active in the anterior neuroectoderm and non-neural ectoderm of the ascidian Ciona intestinalis. Following the dissection of a prototypic anterior placodal enhancer, we searched all genomic conserved non-coding elements for duplicated motifs around genes showing anterior neuroectodermal expression. Strikingly, we identified an over-represented pentamer motif corresponding to the binding site of the homeodomain protein OTX, which plays a pivotal role in the anterior development of all bilaterian species. Using an in vivo reporter gene assay, we observed that 10 of 23 candidate cis-regulatory elements containing duplicated OTX motifs are active in the anterior neuroectoderm, thus showing that this cis-regulatory signature is predictive of neuroectodermal enhancers. These results show that a common cis-regulatory signature corresponding to K50-Paired homeodomain transcription factors is found in non-coding sequences flanking anterior neuroectodermal genes in chordate embryos. Thus, field-specific selector genes impose architectural constraints in the form of combinations of short tags on their target enhancers. This could account for the strong evolutionary conservation of the regulatory elements controlling field-specific selector genes responsible for body plan formation.
Journal Article
Imaging of viral neuroinvasion in the zebrafish reveals that Sindbis and chikungunya viruses favour different entry routes
by
Passoni, Gabriella
,
Levraud, Jean-Pierre
,
Langevin, Christelle
in
Alphavirus
,
Alphavirus Infections - pathology
,
Alphavirus Infections - virology
2017
Alphaviruses, such as chikungunya (CHIKV) and Sindbis virus (SINV), are vector‑borne pathogens that cause acute illnesses in humans and are sometimes associated with neuropathies, especially in infants and elderly patients. Little is known about their entry mechanism in the central nervous system (CNS), even for SINV, which has been used extensively as a model for viral encephalopathies. We previously established a CHIKV infection model in the optically transparent zebrafish larva; here we describe a new SINV infection model in this host. We imaged in vivo the onset and the progression of the infection caused by intravenous SINV inoculation. Similar to that described for CHIKV, infection in the periphery was detected early and was transient, while CNS infection started at later time points and was persistent or progressive. We then tested the possible mechanisms of neuroinvasion by CHIKV and SINV. Neither virus relied on macrophage-mediated transport to access the CNS. CHIKV, but not SINV, always infects endothelial cells of the brain vasculature. By contrast, axonal transport was much more efficient with SINV than CHIKV, both from periphery to the CNS or between neural tissues. Thus, the preferred mechanisms of neuroinvasion by these two related viruses are distinct, providing a powerful imaging-friendly system to compare mechanisms and prevention methods of encephalopathies.
Journal Article
High-resolution 3D imaging of whole organ after clearing: taking a new look at the zebrafish testis
2017
Zebrafish testis has become a powerful model for reproductive biology of teleostean fishes and other vertebrates and encompasses multiple applications in applied and basic research. Many studies have focused on 2D images, which is time consuming and implies extrapolation of results. Three-dimensional imaging of whole organs recently became an important challenge to better understand their architecture and allow cell enumeration. Several protocols have thus been developed to enhance sample transparency, a limiting step for imaging large biological samples. However, none of these methods has been applied to the zebrafish testis. We tested five clearing protocols to determine if some of them could be applied with only small modifications to the testis. We compared clearing efficiency at both macroscopic and microscopic levels. CUBIC and PACT were suitable for an efficient transparency, an optimal optical penetration, the GFP fluorescence preservation and avoiding meaningful tissue deformation. Finally, we succeeded in whole testis 3D capture at a cellular resolution with both CUBIC and PACT, which will be valuable in a standard workflow to investigate the 3D architecture of the testis and its cellular content. This paves the way for further development of high content phenotyping studies in several fields including development, genetic or toxicology.
Journal Article
A TALEN-Exon Skipping Design for a Bethlem Myopathy Model in Zebrafish
by
Sohm, Frédéric
,
Radev, Zlatko
,
Hermel, Jean-Michel
in
Animals
,
Bethlem myopathy
,
Cognitive Sciences
2015
Presently, human collagen VI-related diseases such as Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM) remain incurable, emphasizing the need to unravel their etiology and improve their treatments. In UCMD, symptom onset occurs early, and both diseases aggravate with ageing. In zebrafish fry, morpholinos reproduced early UCMD and BM symptoms but did not allow to study the late phenotype. Here, we produced the first zebrafish line with the human mutation frequently found in collagen VI-related disorders such as UCMD and BM. We used a transcription activator-like effector nuclease (TALEN) to design the col6a1ama605003-line with a mutation within an essential splice donor site, in intron 14 of the col6a1 gene, which provoke an in-frame skipping of exon 14 in the processed mRNA. This mutation at a splice donor site is the first example of a template-independent modification of splicing induced in zebrafish using a targetable nuclease. This technique is readily expandable to other organisms and can be instrumental in other disease studies. Histological and ultrastructural analyzes of homozygous and heterozygous mutant fry and 3 months post-fertilization (mpf) fish revealed co-dominantly inherited abnormal myofibers with disorganized myofibrils, enlarged sarcoplasmic reticulum, altered mitochondria and misaligned sarcomeres. Locomotion analyzes showed hypoxia-response behavior in 9 mpf col6a1 mutant unseen in 3 mpf fish. These symptoms worsened with ageing as described in patients with collagen VI deficiency. Thus, the col6a1ama605003-line is the first adult zebrafish model of collagen VI-related diseases; it will be instrumental both for basic research and drug discovery assays focusing on this type of disorders.
Journal Article
Refining the Ciona intestinalis Model of Central Nervous System Regeneration
by
Thorndyke, Mike
,
Dupont, Sam
,
Sasakura, Yasunori
in
Analogs
,
Animal genetic engineering
,
Animals
2009
New, practical models of central nervous system regeneration are required and should provide molecular tools and resources. We focus here on the tunicate Ciona intestinalis, which has the capacity to regenerate nerves and a complete adult central nervous system, a capacity unusual in the chordate phylum. We investigated the timing and sequence of events during nervous system regeneration in this organism.
We developed techniques for reproducible ablations and for imaging live cellular events in tissue explants. Based on live observations of more than 100 regenerating animals, we subdivided the regeneration process into four stages. Regeneration was functional, as shown by the sequential recovery of reflexes that established new criteria for defining regeneration rates. We used transgenic animals and labeled nucleotide analogs to describe in detail the early cellular events at the tip of the regenerating nerves and the first appearance of the new adult ganglion anlage.
The rate of regeneration was found to be negatively correlated with adult size. New neural structures were derived from the anterior and posterior nerve endings. A blastemal structure was implicated in the formation of new neural cells. This work demonstrates that Ciona intestinalis is as a useful system for studies on regeneration of the brain, brain-associated organs and nerves.
Journal Article
Monoaminergic modulation of photoreception in ascidian: evidence for a proto-hypothalamo-retinal territory
by
Kusakabe, Takehiro G
,
Vernier, Philippe
,
Razy-Krajka, Florian
in
Adrenergic alpha-2 Receptor Agonists - pharmacology
,
Adrenergic alpha-2 Receptor Antagonists - pharmacology
,
Amacrine Cells - cytology
2012
Background
The retina of craniates/vertebrates has been proposed to derive from a photoreceptor prosencephalic territory in ancestral chordates, but the evolutionary origin of the different cell types making the retina is disputed. Except for photoreceptors, the existence of homologs of retinal cells remains uncertain outside vertebrates.
Methods
The expression of genes expressed in the sensory vesicle of the ascidian
Ciona intestinalis
including those encoding components of the monoaminergic neurotransmission systems, was analyzed by in situ hybridization or
in vivo
transfection of the corresponding regulatory elements driving fluorescent reporters. Modulation of photic responses by monoamines was studied by electrophysiology combined with pharmacological treatments.
Results
We show that many molecular characteristics of dopamine-synthesizing cells located in the vicinity of photoreceptors in the sensory vesicle of the ascidian
Ciona intestinalis
are similar to those of amacrine dopamine cells of the vertebrate retina. The ascidian dopamine cells share with vertebrate amacrine cells the expression of the key-transcription factor Ptf1a, as well as that of dopamine-synthesizing enzymes. Surprisingly, the ascidian dopamine cells accumulate serotonin via a functional serotonin transporter, as some amacrine cells also do. Moreover, dopamine cells located in the vicinity of the photoreceptors modulate the light-off induced swimming behavior of ascidian larvae by acting on alpha2-like receptors, instead of dopamine receptors, supporting a role in the modulation of the photic response. These cells are located in a territory of the ascidian sensory vesicle expressing genes found both in the retina and the hypothalamus of vertebrates (
six3/6, Rx, meis, pax6
, visual cycle proteins).
Conclusion
We propose that the dopamine cells of the ascidian larva derive from an ancestral multifunctional cell population located in the periventricular, photoreceptive field of the anterior neural tube of chordates, which also gives rise to both anterior hypothalamus and the retina in craniates/vertebrates. It also shows that the existence of multiple cell types associated with photic responses predates the formation of the vertebrate retina.
Journal Article