Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Language
    • Place of Publication
    • Contributors
    • Location
17,816 result(s) for "Jones, A. Daniel"
Sort by:
Citramalate synthase yields a biosynthetic pathway for isoleucine and straight- and branched-chain ester formation in ripening apple fruit
A plant pathway that initiates with the formation of citramalate from pyruvate and acetyl-CoA by citramalate synthase (CMS) is shown to contribute to the synthesis of α-ketoacids and important odor-active esters in apple (Malus × domestica) fruit. Microarray screening led to the discovery of a gene with high amino acid similarity to 2-isopropylmalate synthase (IPMS). However, functional analysis of recombinant protein revealed its substrate preference differed substantially from IPMS and was more typical of CMS. MdCMS also lacked the regulatory region present in MdIPMS and was not sensitive to feedback inhibition. 13C-acetate feeding of apple tissue labeled citramalate and α-ketoacids in a manner consistent with the presence of the citramalate pathway, labeling both straight- and branched-chain esters. Analysis of genomic DNA (gDNA) revealed the presence of two nearly identical alleles in “Jonagold” fruit (MdCMS_1 and MdCMS_2), differing by two nonsynonymous single-nucleotide polymorphisms (SNPs). The mature proteins differed only at amino acid 387, possessing either glutamine387 (MdCMS_1) or glutamate387 (MdCMS_2). Glutamate387 was associated with near complete loss of activity. MdCMS expression was fruit-specific, increasing severalfold during ripening. The translated protein product was detected in ripe fruit. Transient expression of MdCMS_1 in Nicotiana benthamiana induced the accumulation of high levels of citramalate, whereas MdCMS_2 did not. Domesticated apple lines with MdCMS isozymes containing only glutamate387 produced a very low proportion of 2-methylbutanol-and 2-methylbutanoate (2MB) and 1-propanol and propanoate (PROP) esters. The citramalate pathway, previously only described in microorganisms, is shown to function in ripening apple and contribute to isoleucine and 2MB and PROP ester biosynthesis without feedback regulation.
Alkaloids of the Genus Datura: Review of a Rich Resource for Natural Product Discovery
The genus Datura (Solanaceae) contains nine species of medicinal plants that have held both curative utility and cultural significance throughout history. This genus’ particular bioactivity results from the enormous diversity of alkaloids it contains, making it a valuable study organism for many disciplines. Although Datura contains mostly tropane alkaloids (such as hyoscyamine and scopolamine), indole, beta-carboline, and pyrrolidine alkaloids have also been identified. The tools available to explore specialized metabolism in plants have undergone remarkable advances over the past couple of decades and provide renewed opportunities for discoveries of new compounds and the genetic basis for their biosynthesis. This review provides a comprehensive overview of studies on the alkaloids of Datura that focuses on three questions: How do we find and identify alkaloids? Where do alkaloids come from? What factors affect their presence and abundance? We also address pitfalls and relevant questions applicable to natural products and metabolomics researchers. With both careful perspectives and new advances in instrumentation, the pace of alkaloid discovery—from not just Datura—has the potential to accelerate dramatically in the near future.
Metabolite Diversity in Alkaloid Biosynthesis
Camptothecin is a monoterpene indole alkaloid (MIA) used to produce semisynthetic antitumor drugs. We investigated camptothecin synthesis in Camptotheca acuminata by combining transcriptome and expression data with reverse genetics, biochemistry, and metabolite profiling. RNAi silencing of enzymes required for the indole and seco-iridoid (monoterpene) components identified transcriptional crosstalk coordinating their synthesis in roots. Metabolite profiling and labeling studies of wild-type and RNAi lines identified plausible intermediates for missing pathway steps and demonstrated nearly all camptothecin pathway intermediates are present as multiple isomers. Unlike previously characterized MIA-producing plants, C. acuminata does not synthesize 3-α(S)-strictosidine as its central MIA intermediate and instead uses an alternative secoiridoid pathway that produces multiple isomers of strictosidinic acid. NMR analysis demonstrated that the two major strictosidinic acid isomers are (R) and (S) diastereomers at their glucosylated C21 positions. The presence of multiple diastereomers throughout the pathway is consistent with their use in synthesis before finally being resolved to a single camptothecin isomer after deglucosylation, much as a multilane highway allows parallel tracks to converge at a common destination. A model “diastereomer” pathway for camptothecin biosynthesis in C. acuminata is proposed that fundamentally differs from previously studied MIA pathways.
Cardiolipin-Mediated Mitochondrial Dynamics and Stress Response in Arabidopsis
Mitochondria are essential and dynamic organelles in eukaryotes. Cardiolipin (CL) is a key phospholipid in mitochondrial membranes, playing important roles in maintaining the functional integrity and dynamics of mitochondria in animals and yeasts. However, CL's role in plants is just beginning to be elucidated. In this study, we used Arabidopsis thaliana to examine the subcellular distribution of CL and CARDIOLIPIN SYNTHASE (CLS) and analyzed loss-of-function els mutants for defects in mitochondrial morphogenesis and stress response. We show that CL localizes to mitochondria and is enriched at specific domains, and CLS targets to the inner membrane of mitochondria with its terminus in the intermembrane space. Furthermore, els mutants exhibit significantly impaired growth as well as altered structural integrity and morphogenesis of mitochondria. In contrast to animals and yeasts, in which CL's effect on mitochondrial fusion is more profound, Arabidopsis CL plays a dominant role in mitochondrial fission and exerts this function, at least in part, through stabilizing the protein complex of the major mitochondrial fission factor, DYNAMIN-RELATED PROTEIN3. CL also plays a role in plant responses to heat and extended darkness, stresses that induce programmed cell death. Our study has uncovered conserved and plant-specific aspects of CL biology in mitochondrial dynamics and the organism response to environmental stresses.
Evolutionary routes to biochemical innovation revealed by integrative analysis of a plant-defense related specialized metabolic pathway
The diversity of life on Earth is a result of continual innovations in molecular networks influencing morphology and physiology. Plant specialized metabolism produces hundreds of thousands of compounds, offering striking examples of these innovations. To understand how this novelty is generated, we investigated the evolution of the Solanaceae family-specific, trichome-localized acylsugar biosynthetic pathway using a combination of mass spectrometry, RNA-seq, enzyme assays, RNAi and phylogenomics in different non-model species. Our results reveal hundreds of acylsugars produced across the Solanaceae family and even within a single plant, built on simple sugar cores. The relatively short biosynthetic pathway experienced repeated cycles of innovation over the last 100 million years that include gene duplication and divergence, gene loss, evolution of substrate preference and promiscuity. This study provides mechanistic insights into the emergence of plant chemical novelty, and offers a template for investigating the ~300,000 non-model plant species that remain underexplored. There are about 300,000 species of plant on Earth, which together produce over a million different small molecules called metabolites. Plants use many of these molecules to grow, to communicate with each other or to defend themselves against pests and disease. Humans have co-opted many of the same molecules as well; for example, some are important nutrients while others are active ingredients in medicines. Many plant metabolites are found in almost all plants, but hundreds of thousands of them are more specialized and only found in small groups of related plant species. These specialized metabolites have a wide variety of structures, and are made by different enzymes working together to carry out a series of biochemical reactions. Acylsugars are an example of a group of specialized metabolites with particularly diverse structures. These small molecules are restricted to plants in the Solanaceae family, which includes tomato and tobacco plants. Moghe et al. have now focused on acylsugars to better understand how plants produce the large diversity of chemical structures found in specialized metabolites, and how these processes have evolved over time. An analysis of over 35 plant species from across the Solanaceae family revealed hundreds of acylsugars, with some plants accumulating 300 or more different types of these specialized metabolites. Moghe et al. then looked at the enzymes that make acylsugars from a poorly studied flowering plant called Salpiglossis sinuata, partly because it produces a large diversity of these small molecules and partly because it sits in a unique position in the Solanaceae family tree. The activities of the enzymes were confirmed both in test tubes and in plants. This suggested that many of the enzymes were “promiscuous”, meaning that they could likely use a variety of molecules as starting points for their chemical reactions. This finding could help to explain how this plant species can make such a wide variety of acylsugars. Moghe et al. also discovered that many of the enzymes that make acylsugars are encoded by genes that were originally copies of other genes and that have subsequently evolved new activities. Plant scientists and plant breeders value tomato plants that produce acylsugars because these natural chemicals protect against pests like whiteflies and spider mites. A clearer understanding of the diversity of acylsugars in the Solanaceae family, as well as the enzymes that make these specialized metabolites, could help efforts to breed crops that are more resistant to pests. Some of the enzymes related to those involved in acylsugar production could also help to make chemicals with pharmaceutical value. These new findings might also eventually lead to innovative ways to produce these chemicals on a large scale.
Metabolic Profiling of Volatile Organic Compounds (VOCs) Emitted by the Pathogens Francisella tularensis and Bacillus anthracis in Liquid Culture
We conducted comprehensive (untargeted) metabolic profiling of volatile organic compounds (VOCs) emitted in culture by bacterial taxa Francisella tularensis (F. tularensis) subspecies novicida and Bacillus anthracis (B. anthracis) Sterne, surrogates for potential bacterial bioterrorism agents, as well as selective measurements of VOCs from their fully virulent counterparts, F. tularensis subspecies tularensis strain SCHU S4 and B. anthracis Ames. F. tularensis and B. anthracis were grown in liquid broth for time periods that covered logarithmic growth, stationary, and decline phases. VOCs emitted over the course of the growth phases were collected from the headspace above the cultures using solid phase microextraction (SPME) and were analyzed using gas chromatography-mass spectrometry (GC-MS). We developed criteria for distinguishing VOCs originating from bacteria versus background VOCs (originating from growth media only controls or sampling devices). Analyses of collected VOCs revealed methyl ketones, alcohols, esters, carboxylic acids, and nitrogen- and sulfur-containing compounds that were present in the bacterial cultures and absent (or present at only low abundance) in control samples indicating that these compounds originated from the bacteria. Distinct VOC profiles where observed for F. tularensis when compared with B. anthracis while the observed profiles of each of the two F. tularensis and B. anthracis strains exhibited some similarities. Furthermore, the relative abundance of VOCs was influenced by bacterial growth phase. These data illustrate the potential for VOC profiles to distinguish pathogens at the genus and species-level and to discriminate bacterial growth phases. The determination of VOC profiles lays the groundwork for non-invasive probes of bacterial metabolism and offers prospects for detection of microbe-specific VOC biomarkers from two potential biowarfare agents.
A Genetic Screen Reveals Arabidopsis Stomatal and/or Apoplastic Defenses against Pseudomonas syringae pv. tomato DC3000
Bacterial infection of plants often begins with colonization of the plant surface, followed by entry into the plant through wounds and natural openings (such as stomata), multiplication in the intercellular space (apoplast) of the infected tissues, and dissemination of bacteria to other plants. Historically, most studies assess bacterial infection based on final outcomes of disease and/or pathogen growth using whole infected tissues; few studies have genetically distinguished the contribution of different host cell types in response to an infection. The phytotoxin coronatine (COR) is produced by several pathovars of Pseudomonas syringae. COR-deficient mutants of P. s. tomato (Pst) DC3000 are severely compromised in virulence, especially when inoculated onto the plant surface. We report here a genetic screen to identify Arabidopsis mutants that could rescue the virulence of COR-deficient mutant bacteria. Among the susceptible to coronatine-deficient Pst DC3000 (scord) mutants were two that were defective in stomatal closure response, two that were defective in apoplast defense, and four that were defective in both stomatal and apoplast defense. Isolation of these three classes of mutants suggests that stomatal and apoplastic defenses are integrated in plants, but are genetically separable, and that COR is important for Pst DC3000 to overcome both stomatal guard cell- and apoplastic mesophyll cell-based defenses. Of the six mutants defective in bacterium-triggered stomatal closure, three are defective in salicylic acid (SA)-induced stomatal closure, but exhibit normal stomatal closure in response to abscisic acid (ABA), and scord7 is compromised in both SA- and ABA-induced stomatal closure. We have cloned SCORD3, which is required for salicylic acid (SA) biosynthesis, and SCORD5, which encodes an ATP-binding cassette (ABC) protein, AtGCN20/AtABCF3, predicted to be involved in stress-associated protein translation control. Identification of SCORD5 begins to implicate an important role of stress-associated protein translation in stomatal guard cell signaling in response to microbe-associated molecular patterns and bacterial infection.
Tropinone synthesis via an atypical polyketide synthase and P450-mediated cyclization
Tropinone is the first intermediate in the biosynthesis of the pharmacologically important tropane alkaloids that possesses the 8-azabicyclo[3.2.1]octane core bicyclic structure that defines this alkaloid class. Chemical synthesis of tropinone was achieved in 1901 but the mechanism of tropinone biosynthesis has remained elusive. In this study, we identify a root-expressed type III polyketide synthase from Atropa belladonna (AbPYKS) that catalyzes the formation of 4-(1-methyl-2-pyrrolidinyl)-3-oxobutanoic acid. This catalysis proceeds through a non-canonical mechanism that directly utilizes an unconjugated N -methyl-Δ 1 -pyrrolinium cation as the starter substrate for two rounds of malonyl-Coenzyme A mediated decarboxylative condensation. Subsequent formation of tropinone from 4-(1-methyl-2-pyrrolidinyl)-3-oxobutanoic acid is achieved through cytochrome P450-mediated catalysis by AbCYP82M3. Silencing of AbPYKS and AbCYP82M3 reduces tropane levels in A. belladonna . This study reveals the mechanism of tropinone biosynthesis, explains the in planta co-occurrence of pyrrolidines and tropanes, and demonstrates the feasibility of tropane engineering in a non-tropane producing plant. Tropinone is an intermediate in the biosynthesis of tropane alkaloids. Here, the authors discovered the enzymes AbPYKS and AbCYP82M3, a non-canonical polyketide synthase and a cytochrome P450, that work sequentially to form tropinone from N -methyl-Δ 1 -pyrrolinium cation.
The Flavonoid Biosynthetic Enzyme Chalcone Isomerase Modulates Terpenoid Production in Glandular Trichomes of Tomato
Flavonoids and terpenoids are derived from distinct metabolic pathways but nevertheless serve complementary roles in mediating plant interactions with the environment. Here, we show that glandular trichomes of the anthocyanin free (af) mutant of cultivated tomato (Solarium lycopersicum) fail to accumulate both flavonoids and terpenoids. This pleiotropic metabolic deficiency was associated with loss of resistance to native populations of coleopteran herbivores under field conditions. We demonstrate that Af encodes an isoform (S1CHI1) of the flavonoid biosynthetic enzyme chalcone isomerase (CHI), which catalyzes the conversion of naringenin chalcone to naringenin and is strictly required for flavonoid production in multiple tissues of tomato. Expression of the wild-type SICHI1 gene from its native promoter complemented the anthocyanin deficiency in af Unexpectedly, the SICHI1 transgene also complemented the defect in terpenoid production in glandular trichomes. Our results establish a key role for SICHI1 in flavonoid production in tomato and reveal a link between CHI1 and terpenoid production. Metabolic coordination of the flavonoid and terpenoid pathways may serve to optimize the function of trichome glands in dynamic environments.