Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
14,826 result(s) for "Jones, C. D."
Sort by:
Negative emissions physically needed to keep global warming below 2 °C
To limit global warming to <2 °C we must reduce the net amount of CO 2 we release into the atmosphere, either by producing less CO 2 (conventional mitigation) or by capturing more CO 2 (negative emissions). Here, using state-of-the-art carbon–climate models, we quantify the trade-off between these two options in RCP2.6: an Intergovernmental Panel on Climate Change scenario likely to limit global warming below 2 °C. In our best-case illustrative assumption of conventional mitigation, negative emissions of 0.5–3 Gt C (gigatonnes of carbon) per year and storage capacity of 50–250 Gt C are required. In our worst case, those requirements are 7–11 Gt C per year and 1,000–1,600 Gt C, respectively. Because these figures have not been shown to be feasible, we conclude that development of negative emission technologies should be accelerated, but also that conventional mitigation must remain a substantial part of any climate policy aiming at the 2-°C target. It is widely acknowledged that some form of carbon capture will be necessary to limit global warming to less than 2 °C, but to what extent remains unclear. Here, using climate-carbon models, the authors quantify the amount of negative emissions and carbon storage capacity required to meet this target.
Effect of Anthropogenic Land-Use and Land-Cover Changes on Climate and Land Carbon Storage in CMIP5 Projections for the Twenty-First Century
The effects of land-use changes on climate are assessed using specified-concentration simulations complementary to the representative concentration pathway 2.6 (RCP2.6) and RCP8.5 scenarios performed for phase 5 of the Coupled Model Intercomparison Project (CMIP5). This analysis focuses on differences in climate and land–atmosphere fluxes between the ensemble averages of simulations with and without land-use changes by the end of the twenty-first century. Even though common land-use scenarios are used, the areas of crops and pastures are specific for each Earth system model (ESM). This is due to different interpretations of land-use classes. The analysis reveals that fossil fuel forcing dominates land-use forcing. In addition, the effects of land-use changes are globally not significant, whereas they are significant for regions with land-use changes exceeding 10%. For these regions, three out of six participating models—the Second Generation Canadian Earth System Model (CanESM2); Hadley Centre Global Environmental Model, version 2 (Earth System) (HadGEM2-ES); and Model for Interdisciplinary Research on Climate, Earth System Model (MIROC-ESM)—reveal statistically significant changes in mean annual surface air temperature. In addition, changes in land surface albedo, available energy, and latent heat fluxes are small but significant for most ESMs in regions affected by land-use changes. These climatic effects are relatively small, as land-use changes in the RCP2.6 and RCP8.5 scenarios are small in magnitude and mainly limited to tropical and subtropical regions. The relative importance of the climatic effects of land-use changes is higher for the RCP2.6 scenario, which considers an expansion of biofuel croplands as a climate mitigation option. The underlying similarity among all models is the loss in global land carbon storage due to land-use changes.
Quantifying Carbon Cycle Feedbacks
Perturbations to the carbon cycle could constitute large feedbacks on future changes in atmospheric CO₂ concentration and climate. This paper demonstrates how carbon cycle feedback can be expressed in formally similar ways to climate feedback, and thus compares their magnitudes. The carbon cycle gives rise to two climate feedback terms: the concentration–carbon feedback, resulting from the uptake of carbon by land and ocean as a biogeochemical response to the atmospheric CO₂ concentration, and the climate–carbon feedback, resulting from the effect of climate change on carbon fluxes. In the earth system models of the Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP), climate–carbon feedback on warming is positive and of a similar size to the cloud feedback. The concentration–carbon feedback is negative; it has generally received less attention in the literature, but in magnitude it is 4 times larger than the climate–carbon feedback and more uncertain. The concentration–carbon feedback is the dominant uncertainty in the allowable CO₂ emissions that are consistent with a given CO₂ concentration scenario. In modeling the climate response to a scenario of CO₂ emissions, the net carbon cycle feedback is of comparable size and uncertainty to the noncarbon–climate response. To quantify simulated carbon cycle feedbacks satisfactorily, a radiatively coupled experiment is needed, in addition to the fully coupled and biogeochemically coupled experiments, which are referred to as coupled and uncoupled in C4MIP. The concentration–carbon and climate–carbon feedbacks do not combine linearly, and the concentration–carbon feedback is dependent on scenario and time.
Research priorities for negative emissions
Carbon dioxide removal from the atmosphere (CDR)-also known as 'negative emissions'-features prominently in most 2 °C scenarios and has been under increased scrutiny by scientists, citizens, and policymakers. Critics argue that 'negative emission technologies' (NETs) are insufficiently mature to rely on them for climate stabilization. Some even argue that 2 °C is no longer feasible or might have unacceptable social and environmental costs. Nonetheless, the Paris Agreement endorsed an aspirational goal of limiting global warming to even lower levels, arguing that climate impacts-especially for vulnerable nations such as small island states-will be unacceptably severe in a 2 °C world. While there are few pathways to 2 °C that do not rely on negative emissions, 1.5 °C scenarios are barely conceivable without them. Building on previous assessments of NETs, we identify some urgent research needs to provide a more complete picture for reaching ambitious climate targets, and the role that NETs can play in reaching them.
Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands
In preparation for the fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), the international community is developing new advanced Earth System Models (ESMs) to assess the combined effects of human activities (e.g. land use and fossil fuel emissions) on the carbon-climate system. In addition, four Representative Concentration Pathway (RCP) scenarios of the future (2005–2100) are being provided by four Integrated Assessment Model (IAM) teams to be used as input to the ESMs for future carbon-climate projections (Moss et al. 2010 ). The diversity of approaches and requirements among IAMs and ESMs for tracking land-use change, along with the dependence of model projections on land-use history, presents a challenge for effectively passing data between these communities and for smoothly transitioning from the historical estimates to future projections. Here, a harmonized set of land-use scenarios are presented that smoothly connects historical reconstructions of land use with future projections, in the format required by ESMs. The land-use harmonization strategy estimates fractional land-use patterns and underlying land-use transitions annually for the time period 1500–2100 at 0.5° × 0.5° resolution. Inputs include new gridded historical maps of crop and pasture data from HYDE 3.1 for 1500–2005, updated estimates of historical national wood harvest and of shifting cultivation, and future information on crop, pasture, and wood harvest from the IAM implementations of the RCPs for the period 2005–2100. The computational method integrates these multiple data sources, while minimizing differences at the transition between the historical reconstruction ending conditions and IAM initial conditions, and working to preserve the future changes depicted by the IAMs at the grid cell level. This study for the first time harmonizes land-use history data together with future scenario information from multiple IAMs into a single consistent, spatially gridded, set of land-use change scenarios for studies of human impacts on the past, present, and future Earth system.
Chiral Isotropic Liquids from Achiral Molecules
A variety of simple bent-core molecules exhibit smectic liquid crystal phases of planar fluid layers that are spontaneously both polar and chiral in the absence of crystalline order. We found that because of intralayer structural mismatch, such layers are also only marginally stable against spontaneous saddle splay deformation, which is incompatible with long-range order. This results in macroscopically isotropic fluids that possess only short-range orientational and positional order, in which the only macroscopically broken symmetry is chirality--even though the phases are formed from achiral molecules. Their conglomerate domains exhibit optical rotatory powers comparable to the highest ever found for isotropic fluids of chiral molecules.
Helical Nanofilament Phases
In the formation of chiral crystals, the tendency for twist in the orientation of neighboring molecules is incompatible with ordering into a lattice: Twist is expelled from planar layers at the expense of local strain. We report the ordered state of a neat material in which a local chiral structure is expressed as twisted layers, a state made possible by spatial limitation of layering to a periodic array of nanoscale filaments. Although made of achiral molecules, the layers in these filaments are twisted and rigorously homochiral--a broken symmetry. The precise structural definition achieved in filament self-assembly enables collective organization into arrays in which an additional broken symmetry--the appearance of macroscopic coherence of the filament twist--produces a liquid crystal phase of helically precessing layers.