Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
14
result(s) for
"Jones, Donald J.L."
Sort by:
High mass accuracy assay for trimethylamine N-oxide using stable-isotope dilution with liquid chromatography coupled to orthogonal acceleration time of flight mass spectrometry with multiple reaction monitoring
2016
Trimethylamine N-oxide (TMAO) has attracted interest as circulating levels have reported prognostic value in patients with cardiovascular conditions, such as heart failure. With continual advances in accurate mass measurements, robust methods that can employ the capabilities of time of flight mass spectrometers would offer additional utility in the analysis of complex clinical samples. A Waters Acquity UPLC was coupled to a Waters Synapt G2-S high-resolution mass spectrometer. TMAO was measured in plasma by stable-isotope dilution-hydrophilic interaction liquid chromatography-time of flight mass spectrometry with multiple reaction monitoring (LC-ToF-MRM). Two transitions were monitored: m/z 76.1 to 58.066/59.073 and m/z 85.1 to 66.116/68.130. The method was assessed for linearity, lower limits of detection and quantitation, and reproducibility. A selected cohort of patients with systolic heart failure (SHF; n = 43) and healthy controls (n = 42) were measured to verify the assay is suitable for the analysis of clinical samples. Quantitative analysis of TMAO using LC-ToF-MRM enabled linearity to be established between 0.1 and 75 μmol/L, with a lower limit of detection of 0.05 μmol/L. Relative standard deviations reported an inter-day variation of ≤20.8 % and an intra-day variation of ≤11.4 % with an intra-study quality control variation of 2.7 %. Run times were 2.5 min. Clinical application of the method reported that TMAO in SHF was elevated compared to that of healthy controls (p < 0.0005). LC-ToF-MRM offers a highly selective method for accurate mass measurement of TMAO with rapid and reproducible results. Applicability of the method was shown in a selected cohort of patient samples.
Journal Article
Targeted Degradation of Class 1 HDACs With PROTACs is Highly Effective at Inducing DLBCL Cell Death
2025
Despite the good options for the management of Diffuse large B‐cell lymphoma (DLBCL), a significant percentage of patients either do not respond to current treatments or relapse after a short time. Thus, a wider palette of targeted therapeutic strategies is needed. Histone deacetylases (HDACs) inhibitors have shown promising responses in B‐cell malignancies, but their off‐target effects limit their efficiency. Here, we investigated the use of novel targeted therapeutics against class I HDACs to specifically induce cell death in DLBCL cells. We show that a proteolysis targeting chimera (PROTAC) that combined HDAC inhibitor CI‐994 and an IAP ligand had a strong effect in killing different DLBCL cell lines, being more effective in doing so than CI‐994 on its own. Moreover, we show that this was concomitant with the induction of DNA damage and apoptosis. A proteomics screen showed that the mechanism of induction of cell death by this PROTAC likely depends on the simultaneous activation of pro‐apoptotic proteins (such as PARP‐1, PDCD6IP, DAPk1, TP53BP1, and CACYBP) and the inhibition of pro‐survival pathways. We conclude that eliminating class I HDACs with specific PROTACs could be an effective and precise strategy for treating DLBCL that should be further tested for their potential clinical relevance. Trial Registration: The authors have confirmed clinical trial registration is not needed for this submission.
Journal Article
Trimethylamine N-oxide and Risk Stratification after Acute Myocardial Infarction
by
Ng, Leong L
,
Heaney, Liam M
,
Jones, Donald J L
in
Acute coronary syndromes
,
Acute Disease
,
Aged
2017
Risk stratification in acute myocardial infarction (MI) remains a clinical challenge. Trimethylamine N-oxide (TMAO), a gut-derived metabolite, was investigated for its ability to assist in risk stratification for acute MI hospitalizations.
TMAO was analyzed in 1079 acute MI patients. Associations with adverse outcome of all-cause mortality or reinfarction (death/MI) for shorter (6-month) and longer (2-year) terms were assessed and compared to other cohort-specific biomarkers. Added value in risk stratification by combined use with the Global Registry of Acute Coronary Events (GRACE) score was also investigated.
TMAO independently predicted death/MI at 2 years [292 events, hazard ratio 1.21 (95% CI, 1.03-1.43), P = 0.023], but was not able to predict death/MI at 6 months (161 events, P = 0.119). For death/MI at 2 years, TMAO retained independent prediction of risk (P = 0.034) and improved stratification even after addition of multiple alternative and contemporary biomarkers previously shown to provide added prognostic value in this cohort. From these contemporary biomarkers, TMAO remained the only significant predictor of outcome. Further, TMAO improved risk stratification for death/MI at 6 months by down-classifying risk in patients with GRACE score >119 and plasma TMAO concentration ≤3.7 μmol/L.
TMAO levels showed association with poor prognosis (death/MI) at 2 years and superiority over contemporary biomarkers for patients hospitalized due to acute MI. Furthermore, when used with the GRACE score for calculating risk at 6 months, TMAO reidentified patients at lower risk after initial categorization into a higher-risk group and showed usefulness as a secondary risk stratification biomarker.
Journal Article
Trimethylamine N-oxide and prognosis in acute heart failure
2016
ObjectiveAcute heart failure (AHF) is associated with high mortality and morbidity. Trimethylamine N-oxide (TMAO), a gut-derived metabolite, has reported association with mortality risk in chronic HF but this association in AHF is still unknown. The present study investigated TMAO in patients admitted to hospital with AHF, and association of circulating levels with prognosis.MethodsIn total, 972 plasma samples were analysed for TMAO concentration by liquid chromatography-mass spectrometry. Associations with in-hospital mortality (72 events), all-cause mortality (death, 268 events) and a composite of death or rehospitalisation due to HF (death/HF, 384 events) at 1 year were examined.ResultsTMAO improved risk stratification for in-hospital mortality in combination with current clinical scorings (OR≥1.13, p≤0.014). TMAO tertile analyses reported a graded risk in adverse outcome within 1 year (OR≥1.61, p≤0.004) and improved outcome prediction when stratified as none, one or both biomarker(s) elevated in combination with N-terminal pro B-type natriuretic peptide (NT-proBNP) (OR≥2.15, p≤0.007). TMAO was independently predictive for death and death/HF when corrected for cardiac risk factors (HR≥1.16, p≤0.037); however, this ability was weakened when indices of renal function were included, possibly due to multicollinearity.ConclusionsTMAO contributed additional information on patient stratification for in-hospital mortality of AHF admissions using available clinical scores that include renal indices. Furthermore, elevated levels were associated with poor prognosis at 1 year and combination of TMAO and NT-proBNP provided additional prognostic information. TMAO was a univariate predictor of death and death/HF, and remained an independent predictor until adjusted for renal confounders.
Journal Article
Comet Assay Profiling of FLASH-Induced Damage: Mechanistic Insights into the Effects of FLASH Irradiation
by
Jones, George D. D.
,
Cooper, Christian R.
,
Jones, Donald J. L.
in
Basic Medicine
,
Cell and Molecular Biology
,
Cell- och molekylärbiologi
2023
Numerous studies have demonstrated the normal tissue-sparing effects of ultra-high dose rate ‘FLASH’ irradiation in vivo, with an associated reduction in damage burden being reported in vitro. Towards this, two key radiochemical mechanisms have been proposed: radical–radical recombination (RRR) and transient oxygen depletion (TOD), with both being proposed to lead to reduced levels of induced damage. Previously, we reported that FLASH induces lower levels of DNA strand break damage in whole-blood peripheral blood lymphocytes (WB-PBL) ex vivo, but our study failed to distinguish the mechanism(s) involved. A potential outcome of RRR is the formation of crosslink damage (particularly, if any organic radicals recombine), whilst a possible outcome of TOD is a more anoxic profile of induced damage resulting from FLASH. Therefore, the aim of the current study was to profile FLASH-induced damage via the Comet assay, assessing any DNA crosslink formation as a putative marker of RRR and/or anoxic DNA damage formation as an indicative marker of TOD, to determine the extent to which either mechanism contributes to the “FLASH effect”. Following FLASH irradiation, we see no evidence of any crosslink formation; however, FLASH irradiation induces a more anoxic profile of induced damage, supporting the TOD mechanism. Furthermore, treatment of WB-PBLs pre-irradiation with BSO abrogates the reduced strand break damage burden mediated by FLASH exposures. In summary, we do not see any experimental evidence to support the RRR mechanism contributing to the reduced damage burden induced by FLASH. However, the observation of a greater anoxic profile of damage following FLASH irradiation, together with the BSO abrogation of the reduced strand break damage burden mediated by FLASH, lends further support to TOD being a driver of the reduced damage burden plus a change in the damage profile mediated by FLASH.
Journal Article
Association of gut-related metabolites with outcome in acute heart failure
by
Salzano, Andrea
,
Cassambai, Shabana
,
Israr, Muhammad Zubair
in
Acetyl-L-carnitine
,
Acetylcarnitine - blood
,
Acetylcarnitine - metabolism
2021
Trimethylamine N-oxide (TMAO), a gut-related metabolite, is associated with heart failure (HF) outcomes. However, TMAO is the final product of a complex metabolic pathway (ie, choline/carnitine) that has never been entirely investigated in HF. The present study investigates a panel of metabolites involved in the TMAO-choline/carnitine metabolic pathway for their associations with outcome in acute HF patients.
In total, 806 plasma samples from acute HF patients were analyzed for TMAO, trimethyllysine, L-carnitine, acetyl-L-carnitine, γ-butyrobetaine, crotonobetaine, trimethylamine, betaine aldehyde, choline, and betaine using a developed liquid chromatography-tandem mass spectrometry method. Associations with outcome of all-cause mortality (death) and a composite of all-cause mortality and/or rehospitalization caused by HF (death/HF) at 30 days and 1 year were investigated.
TMAO, trimethyllysine, L-carnitine, acetyl-L-carnitine, and γ-butyrobetaine were associated with death and death/HF at 30 days (short term; hazard ratio 1.30-1.49, P≤ .021) and at 1 year (long term; hazard ratio 1.15-1.25, P≤ .026) when adjusted for cardiac risk factors. L-carnitine and acetyl-L-carnitine were superior for short-term outcomes whereas TMAO was the superior metabolite for association with long-term outcomes. Furthermore, acetyl-L-carnitine and L-carnitine were superior for in-hospital mortality and improved risk stratification when combined with current clinical risk scores (ie, Acute Decompensated HEart Failure National REgistry, Organized Program To Initiate Lifesaving Treatment In Hospitalized Patients With Heart Failure, and Get With The Guidelines-Heart Failure; odds ratio (OR) ≥ 1.52, P≤ .020).
Carnitine-related metabolites show associations with adverse outcomes in acute HF, in particular L-carnitine and acetyl-L-carnitine for short-term outcomes, and TMAO for long-term outcomes. Further studies are warranted to investigate the role and implications of carnitine metabolites including intervention in the pathogenesis of HF.
Journal Article
Increased mitochondrial proline metabolism sustains proliferation and survival of colorectal cancer cells
by
Parrott, Emma
,
Higgins, Jennifer A.
,
Guterman, Inna
in
Amino acids
,
Animal models
,
Animal tissues
2022
Research into the metabolism of the non-essential amino acid (NEAA) proline in cancer has gained traction in recent years. The last step in the proline biosynthesis pathway is catalyzed by pyrroline-5-carboxylate reductase (PYCR) enzymes. There are three PYCR enzymes: mitochondrial PYCR1 and 2 and cytosolic PYCR3 encoded by separate genes. The expression of the PYCR1 gene is increased in numerous malignancies and correlates with poor prognosis. PYCR1 expression sustains cancer cells’ proliferation and survival and several mechanisms have been implicated to explain its oncogenic role. It has been suggested that the biosynthesis of proline is key to sustain protein synthesis, support mitochondrial function and nucleotide biosynthesis. However, the links between proline metabolism and cancer remain ill-defined and are likely to be tissue specific. Here we use a combination of human dataset, human tissue and mouse models to show that the expression levels of the proline biosynthesis enzymes are significantly increased during colorectal tumorigenesis. Functionally, the expression of mitochondrial PYCRs is necessary for cancer cells’ survival and proliferation. However, the phenotypic consequences of PYCRs depletion could not be rescued by external supplementation with either proline or nucleotides. Overall, our data suggest that, despite the mechanisms underlying the role of proline metabolism in colorectal tumorigenesis remain elusive, targeting the proline biosynthesis pathway is a suitable approach for the development of novel anti-cancer therapies.
Journal Article
Examination of human osteoarchaeological remains as a feasible source of polar and apolar metabolites to study past conditions
2023
Metabolomics is a modern tool that aids in our understanding of the molecular changes in organisms. Archaeological science is a branch of archaeology that explores different archaeological materials using modern analytical tools. Human osteoarchaeological material are a frequent finding in archaeological contexts and have the potential to offer information about previous human populations, which can be illuminating about our current condition. Using a set of samples comprising different skeletal elements and bone structures, here we explore for the first time the possibility of extracting metabolites from osteoarchaeological material. Here, a protocol for extraction and measurement of extracted polar and less-polar/apolar metabolites by ultra-high performance liquid chromatography hyphenated to high resolution mass spectrometry is presented to measure the molecules separated after a reversed phase and hydrophilic interaction liquid chromatography column. Molecular information was obtained, showing that osteoarchaeological material is a viable source of molecular information for metabolomic studies.
Journal Article
Notch3 and Hey-1 as Prognostic Biomarkers in Pancreatic Adenocarcinoma
by
Manson, Margaret M.
,
Neal, Christopher P.
,
Mann, Christopher D.
in
Adenocarcinoma
,
Adenocarcinoma - blood
,
Adenocarcinoma - metabolism
2012
In order to achieve a better outcome for pancreatic cancer patients, reliable biomarkers are required which allow for improved diagnosis. These may emanate from a more detailed molecular understanding of the aggressive nature of this disease. Having previously reported that Notch3 activation appeared to be associated with more aggressive disease, we have now examined components of this pathway (Notch1, Notch3, Notch4, HES-1, HEY-1) in more detail in resectable (n = 42) and non-resectable (n = 50) tumours compared to uninvolved pancreas. All three Notch family members were significantly elevated in tumour tissue, compared to uninvolved pancreas, with expression maintained within matched lymph node metastases. Furthermore, significantly higher nuclear expression of Notch1, -3 and -4, HES-1, and HEY-1 (all p ≤ 0.001) was noted in locally advanced and metastatic tumours compared to resectable cancers. In survival analyses, nuclear Notch3 and HEY-1 expression were significantly associated with reduced overall and disease-free survival following tumour resection with curative intent, with nuclear HEY-1 maintaining independent prognostic significance for both outcomes on multivariate analysis. These data further support a central role for Notch signalling in pancreatic cancer and suggest that nuclear expression of Notch3 and its target gene, HEY-1, merit validation in biomarker panels for diagnosis, prognosis and treatment efficacy. A peptide fragment of Notch3 was detected in plasma from patients with inoperable pancreatic cancer, but due to wide inter-individual variation, mean levels were not significantly different compared to age-matched controls.
Journal Article
Circulating sphingolipids and relationship to cardiac remodelling before and following a low-energy diet in asymptomatic Type 2 Diabetes
2024
Background
Heart failure with preserved ejection fraction (HFpEF) is a heterogenous multi-system syndrome with limited efficacious treatment options. The prevalence of Type 2 diabetes (T2D) continues to rise and predisposes patients to HFpEF, and HFpEF remains one of the biggest challenges in cardiovascular medicine today. Novel therapeutic targets are required to meet this important clinical need. Deep phenotyping studies including -OMIC analyses can provide important pathogenic information to aid the identification of such targets. The aims of this study were to determine; 1) the impact of a low-energy diet on plasma sphingolipid/ceramide profiles in people with T2D compared to healthy controls and, 2) if the change in sphingolipid/ceramide profile is associated with reverse cardiovascular remodelling.
Methods
Post-hoc analysis of a randomised controlled trial (NCT02590822) including adults with T2D with no cardiovascular disease who completed a 12-week low-energy (∼810 kcal/day) meal-replacement plan (MRP) and matched healthy controls (HC). Echocardiography, cardiac MRI and a fasting blood for lipidomics were undertaken
pre
/
post
-intervention. Candidate biomarkers were identified from case–control comparison (fold change > 1.5 and statistical significance
p
< 0.05) and their response to the MRP reported. Association between change in biomarkers and change indices of cardiac remodelling were explored.
Results
Twenty-four people with T2D (15 males, age 51.1 ± 5.7 years), and 25 HC (15 male, 48.3 ± 6.6 years) were included. Subjects with T2D had increased left ventricular (LV) mass:volume ratio (0.84 ± 0.13 vs. 0.70 ± 0.08,
p
< 0.001), increased systolic function but impaired diastolic function compared to HC. Twelve long-chain polyunsaturated sphingolipids, including four ceramides, were downregulated in subjects with T2D at baseline. Three sphingomyelin species and all ceramides were inversely associated with LV mass:volume. There was a significant increase in all species and shift towards HC following the MRP, however, none of these changes were associated with reverse cardiac remodelling.
Conclusion
The lack of association between change in sphingolipids/ceramides and reverse cardiac remodelling following the MRP casts doubt on a causative role of sphingolipids/ceramides in the progression of heart failure in T2D.
Trial registration
NCT02590822.
Highlights
• This study sheds light on the emerging link between dysregulated sphingolipid/ceramide metabolism and the development of heart failure (HF) in individuals with type 2 diabetes (T2D).
• Leveraging the gold standard assessment tool, cardiac MRI, this study is one of the first to explore plasma sphingolipid/ceramide in relation to measures of cardiovascular structure and function.
• The findings reveal that working-aged adults with T2D and Stage A/B HF exhibit disrupted fatty acid metabolism, characterized by reduced levels of long-chain polyunsaturated sphingomyelin/ceramide species.
• Importantly, this study challenges the notion of a causative role of sphingolipids/ceramides in the progression of heart failure in T2D.
Journal Article