Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
2,243
result(s) for
"Jones, Katherine"
Sort by:
A degron-mimicking molecular glue drives CRBN homo-dimerization and degradation
2025
Cereblon (CRBN) is an E3 ubiquitin ligase widely harnessed for targeted protein degradation (TPD). We report the discovery of a molecular glue degrader (MGD), MRT-31619, that drives homo-dimerization of CRBN and promotes its fast, potent, and selective degradation by the ubiquitin proteasome system. Interestingly, the cryo-electron microscopy (cryo-EM) structure of the CRBN homodimer reveals a unique mechanism whereby two molecular glues assemble into a helix-like structure and drive ternary complex formation by mimicking a neosubstrate G-loop degron. This CRBN chemical knockout offers a valuable tool to elucidate the molecular mechanism of MGDs, to investigate its endogenous substrates and understand their physiological roles.
A molecular glue induces CRBN homodimerization and degradation through degron mimicry, revealing a distinct glue mechanism and offering a tool to study CRBN biology.
Journal Article
TIGIT can inhibit T cell activation via ligation-induced nanoclusters, independent of CD226 co-stimulation
2023
TIGIT is an inhibitory receptor expressed on lymphocytes and can inhibit T cells by preventing CD226 co-stimulation through interactions
in cis
or through competition of shared ligands. Whether TIGIT directly delivers cell-intrinsic inhibitory signals in T cells remains unclear. Here we show, by analysing lymphocytes from matched human tumour and peripheral blood samples, that TIGIT and CD226 co-expression is rare on tumour-infiltrating lymphocytes. Using super-resolution microscopy and other techniques, we demonstrate that ligation with CD155 causes TIGIT to reorganise into dense nanoclusters, which coalesce with T cell receptor (TCR)-rich clusters at immune synapses. Functionally, this reduces cytokine secretion in a manner dependent on TIGIT’s intracellular ITT-like signalling motif. Thus, we provide evidence that TIGIT directly inhibits lymphocyte activation, acting independently of CD226, requiring intracellular signalling that is proximal to the TCR. Within the subset of tumours where TIGIT-expressing cells do not commonly co-express CD226, this will likely be the dominant mechanism of action.
CD226 provides a co-stimulatory signal to the T cell receptor during activation, and TIGIT is believed to inhibit this process by competing for the CD226 ligand CD155. Here authors show that ligand binding induces dense nanocluster formation by TIGIT which initiates intrinsic, CD226 independent inhibitory signals, proximal to T cell receptor signalling.
Journal Article
Effects of structured exercise programmes on physiological and psychological outcomes in adults with inflammatory bowel disease (IBD): A systematic review and meta-analysis
by
Kimble, Rachel
,
Baker, Katherine
,
Jones, Katherine
in
Adult
,
Biology and Life Sciences
,
Care and treatment
2022
Exercise has been suggested to counteract specific complications of inflammatory bowel disease (IBD). However, its role as a therapeutic option remains poorly understood. Therefore, we conducted a systematic review and meta-analysis on the effects of exercise in IBD.
Five databases (MEDLINE, Embase, CINAHL, CENTRAL and SPORTDiscus) and three registers (Clinicaltrials.gov, WHO ICTRP and ISRCTN) were searched from inception to September 2022, for studies assessing the effects of structured exercise of at least 4 weeks duration on physiological and/or psychological outcomes in adults with IBD. Two independent reviewers screened records, assessed risk of bias using the Cochrane Risk of Bias (RoB 2.0) and ROBINS-I tools, and evaluated the certainty of evidence using the GRADE method. Data were meta-analysed using a random-effects model.
From 4,123 citations, 15 studies (9 RCTs) were included, comprising of 637 participants (36% male). Pooled evidence from six RCTs indicated that exercise improved disease activity (SMD = -0.44; 95% CI [-0.82 to -0.07]; p = 0.02), but not disease-specific quality of life (QOL) (IBDQ total score; MD = 3.52; -2.00 to 9.04; p = 0.21) when compared to controls. Although meta-analysis could not be performed for other outcomes, benefits were identified in fatigue, muscular function, body composition, cardiorespiratory fitness, bone mineral density and psychological well-being. Fourteen exercise-related non-serious adverse events occurred. The overall certainty of evidence was low for disease activity and very low for HRQOL as a result of downgrading for risk of bias and imprecision.
Structured exercise programmes improve disease activity, but not disease-specific QOL. Defining an optimal exercise prescription and synthesis of evidence in other outcomes, was limited by insufficient well-designed studies to ascertain the true effect of exercise training. This warrants further large-scale randomised trials employing standard exercise prescription to verify this effect to enable the implementation into clinical practice.
This systematic review was prospectively registered in an international database of systematic reviews in health-related research (CRD42017077992; https://www.crd.york.ac.uk/prospero/).
Journal Article
Gene expression regulation by CDK12: a versatile kinase in cancer with functions beyond CTD phosphorylation
2020
Cyclin-dependent kinases (CDKs) play critical roles in cell cycle progression and gene expression regulation. In human cancer, transcription-associated CDKs can activate oncogenic gene expression programs, whereas cell cycle-regulatory CDKs mainly induce uncontrolled proliferation. Cyclin-dependent kinase 12 (CDK12) belongs to the CDK family of serine/threonine kinases and has been recently found to have multiple roles in gene expression regulation and tumorigenesis. Originally, CDK12 was thought to be one of the transcription-associated CDKs, acting with its cyclin partner Cyclin K to promote the phosphorylation of the C-terminal domain (CTD) of RNA polymerase II and induce transcription elongation. However, recent studies have demonstrated that CDK12 also controls multiple gene expression processes, including transcription termination, mRNA splicing, and translation. Most importantly, CDK12 mutations are frequently found in human tumors. Loss of CDK12 function causes defective expression of DNA damage response (DDR) genes, which eventually results in genome instability, a hallmark of human cancer. Here, we discuss the diverse roles of CDK12 in gene expression regulation and human cancer, focusing on newly identified CDK12 kinase functions in cellular processes and highlighting CDK12 as a promising therapeutic target for human cancer treatment.Cancer: Phosphorylating enzyme may provide therapeutic targetBetter understanding of the roles played by a protein kinase, an enzyme that adds phosphate groups to other molecules, in healthy and diseased states may help scientists identify novel cancer treatments. Cyclin-dependent kinases (CDKs) are a family of protein kinases crucial to cell cycling and gene expression. CDK12 can activate and modulate cancer-related gene expression, but, according to a review by Seung Hyuk Choi and colleagues at the Salk Institute for Biological Studies in La Jolla, USA, further investigations into its exact functioning and control mechanisms are required. CDK12 mutations are frequently found in aggressive breast and ovarian cancers, while loss of CDK12 function results in abnormal expression of DNA damage response genes and genome instability. CDK12 may also regulate drug resistance in cancer cells. The team suggests that therapies targeting CDK12 are worth exploring.
Journal Article
Fear, foraging and olfaction : how mesopredators avoid costly interactions with apex predators
by
Hayward, Matt W.
,
Kusak, Josip
,
Haswell, Peter M.
in
Animals
,
anthropogenic activities
,
Anthropogenic factors
2018
Where direct killing is rare and niche overlap low, sympatric carnivores may appear to coexist without conflict. Interference interactions, harassment and injury from larger carnivores may still pose a risk to smaller mesopredators. Foraging theory suggests that animals should adjust their behaviour accordingly to optimise foraging efficiency and overall fitness, trading off harvest rate with costs to fitness. The foraging behaviour of red foxes, Vulpes vulpes, was studied with automated cameras and a repeated measures giving-up density (GUD) experiment where olfactory risk cues were manipulated. In Plitvice Lakes National Park, Croatia, red foxes increased GUDs by 34% and quitting harvest rates by 29% in response to wolf urine. In addition to leaving more food behind, foxes also responded to wolf urine by spending less time visiting food patches each day and altering their behaviour in order to compensate for the increased risk when foraging from patches. Thus, red foxes utilised olfaction to assess risk and experienced foraging costs due to the presence of a cue from gray wolves, Canis lupus. This study identifies behavioural mechanisms which may enable competing predators to coexist, and highlights the potential for additional ecosystem service pathways arising from the behaviour of large carnivores. Given the vulnerability of large carnivores to anthropogenic disturbance, a growing human population and intensifying resource consumption, it becomes increasingly important to understand ecological processes so that land can be managed appropriately.
Journal Article