Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
5 result(s) for "Jongen, Cynthia"
Sort by:
Progression of Cerebral Atrophy and White Matter Hyperintensities in Patients With Type 2 Diabetes
OBJECTIVE: Type 2 diabetes is associated with a moderate degree of cerebral atrophy and a higher white matter hyperintensity (WMH) volume. How these brain-imaging abnormalities evolve over time is unknown. The present study aims to quantify cerebral atrophy and WMH progression over 4 years in type 2 diabetes. RESEARCH DESIGN AND METHODS: A total of 55 patients with type 2 diabetes and 28 age-, sex-, and IQ-matched control participants had two 1.5T magnetic resonance imaging scans with a 4-year interval. Volumetric measurements of total brain, peripheral cerebrospinal fluid (CSF), lateral ventricles, and WMH were performed with k-nearest neighbor-based probabilistic segmentation. All volumes were expressed as percentage of intracranial volume. Linear regression analyses, adjusted for age and sex, were performed to compare brain volumes between the groups and to identify determinants of volumetric change within the type 2 diabetic group. RESULTS: At baseline, patients with type 2 diabetes had a significantly smaller total brain volume and larger peripheral CSF volume than control participants. In both groups, all volumes showed a significant change over time. Patients with type 2 diabetes had a greater increase in lateral ventricular volume than control participants (mean adjusted between-group difference in change over time [95% CI]: 0.11% in 4 years [0.00 to 0.22], P = 0.047). CONCLUSIONS: The greater increase in lateral ventricular volume over time in patients with type 2 diabetes compared with control participants shows that type 2 diabetes is associated with a slow increase of cerebral atrophy over the course of years.
SPECT imaging of D2 dopamine receptors and endogenous dopamine release in mice
Purpose The dopamine D 2 receptor (D2R) is important in the mediation of addiction. [ 123 I]iodobenzamide (IBZM), a SPECT ligand for the D2R, has been used for in vivo studies of D2R availability in humans, monkeys, and rats. Although mouse models are important in the study of addiction, [ 123 I]IBZM has not been used in mice SPECT studies. This study evaluates the use of [ 123 I]IBZM for measuring D2R availability in mice. Methods Pharmacokinetics of [ 123 I]IBZM in mice were studied with pinhole SPECT imaging after intravenous (i.v.) injection of [ 123 I]IBZM (20, 40, and 70 MBq). In addition, the ability to measure the release of endogenous dopamine after amphetamine administration with [ 123 I]IBZM SPECT was investigated. Thirdly, i.v. administration, the standard route of administration, and intraperitoneal (i.p.) administration of [ 123 I]IBZM were compared. Results Specific binding of [ 123 I]IBZM within the mouse striatum could be clearly visualized with SPECT. Peak specific striatal binding ratios were reached around 90 min post-injection. After amphetamine administration, the specific binding ratios of [ 123 I]IBZM decreased significantly (−27.2%; n  = 6; p  = 0.046). Intravenous administration of [ 123 I]IBZM led to significantly higher specific binding than i.p. administration of the same dose. However, we found that i.v. administration of a dose of 70 MBq [ 123 I]IBZM might result in acute ethanol intoxication because ethanol is used as a preparative aid for the routine production of [ 123 I]IBZM. Conclusions Imaging of D2R availability and endogenous dopamine release in mice is feasible using [ 123 I]IBZM single pinhole SPECT. Using commercially produced [ 123 I]IBZM, a dose of 40 MBq injected i.v. can be recommended.
SPECT imaging of D sub(2) dopamine receptors and endogenous dopamine release in mice
Purpose: The dopamine D sub(2) receptor (D2R) is important in the mediation of addiction. [ super(123)I]iodobenzamide (IBZM), a SPECT ligand for the D2R, has been used for in vivo studies of D2R availability in humans, monkeys, and rats. Although mouse models are important in the study of addiction, [ super(123)I]IBZM has not been used in mice SPECT studies. This study evaluates the use of [ super(123)I]IBZM for measuring D2R availability in mice. Methods: Pharmacokinetics of [ super(123)I]IBZM in mice were studied with pinhole SPECT imaging after intravenous (i.v.) injection of [ super(123)I]IBZM (20, 40, and 70 MBq). In addition, the ability to measure the release of endogenous dopamine after amphetamine administration with [ super(123)I]IBZM SPECT was investigated. Thirdly, i.v. administration, the standard route of administration, and intraperitoneal (i.p.) administration of [ super(123)I]IBZM were compared. Results: Specific binding of [ super(123)I]IBZM within the mouse striatum could be clearly visualized with SPECT. Peak specific striatal binding ratios were reached around 90 min post-injection. After amphetamine administration, the specific binding ratios of [ super(123)I]IBZM decreased significantly (-27.2%; n = 6; p = 0.046). Intravenous administration of [ super(123)I]IBZM led to significantly higher specific binding than i.p. administration of the same dose. However, we found that i.v. administration of a dose of 70 MBq [ super(123)I]IBZM might result in acute ethanol intoxication because ethanol is used as a preparative aid for the routine production of [ super(123)I]IBZM. Conclusions: Imaging of D2R availability and endogenous dopamine release in mice is feasible using [ super(123)I]IBZM single pinhole SPECT. Using commercially produced [ super(123)I]IBZM, a dose of 40 MBq injected i.v. can be recommended.
Progression off Cerebral Atrophy and White Matter Hyperintensities in Patients With Type 2 Diabetes
Type 2 diabetes is associated with a moderate degree of cerebral atrophy and a higher white matter hyperintensity (WMH) volume. How these brain-imaging abnormalities evolve over time is unknown. The present study aims to quantify cerebral atrophy and WMH progression over 4 years in type 2 diabetes. A total of 55 patients with type 2 diabetes and 28 age-, sex-, and IQ-matched control participants had two 1.5T magnetic resonance imaging scans with a 4-year interval. Volumetric measurements of total brain, peripheral cerebrospinal fluid (CSF), lateral ventricles, and WMH were performed with k-nearest neighbor-based probabilistic segmentation. All volumes were expressed as percentage of intracranial volume. Linear regression analyses, adjusted for age and sex, were performed to compare brain volumes between the groups and to identify determinants of volumetric change within the type 2 diabetic group. At baseline, patients with type 2 diabetes had a significantly smaller total brain volume and larger peripheral CSF volume than control participants. In both groups, all volumes showed a significant change over time. Patients with type 2 diabetes had a greater increase in lateral ventricular volume than control participants (mean adjusted between-group difference in change over time [95% CI]: 0.11% in 4 years [0.00 to 0.22], P = 0.047). The greater increase in lateral ventricular volume over time in patients with type 2 diabetes compared with control participants shows that type 2 diabetes is associated with a slow increase of cerebral atrophy over the course of years.
Construction and evaluation of an average CT brain image for inter-subject registration
An average CT brain image is constructed to serve as reference frame for inter-subject registration. A set of 96 clinical CT images is used. Registration includes translation, rotation, and anisotropic scaling. A temporary average based on a subset of 32 images is constructed. This image is used as reference for the iterative construction of the average CT image. This approach is computationally efficient and results in a consistent registration of the 96 images. Registration of new images to the average CT is more consistent than registration to a single CT image. The use of the average CT image is illustrated.