Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
580
result(s) for
"Jordan, Craig T."
Sort by:
Increasing Complexity of the Cancer Stem Cell Paradigm
2009
The investigation and study of cancer stem cells (CSCs) have received enormous attention over the past 5 to 10 years but remain topics of considerable controversy. Opinions about the validity of the CSC hypothesis, the biological properties of CSCs, and the relevance of CSCs to cancer therapy differ widely. In the following commentary, we discuss the nature of the debate, the parameters by which CSCs can or cannot be defined, and the identification of new potential therapeutic targets elucidated by considering cancer as a problem in stem cell biology.
Journal Article
Methylation-dependent loss of RIP3 expression in cancer represses programmed necrosis in response to chemotherapeutics
by
Gi-Bang Koo Michael J Morgan Da-Gyum Lee Woo-Jung Kim Jung-Ho Yoon Ja Seung Koo Seung I1 Kim Soo Jung Kim Mi Kwon Son Soon Still Hong Jean M Mulcahy Levy Daniel A Pollyea Craig T Jordan Pearlly Yan David Frankhouser Deedra Nicolet Kati Maharry Guido Marcucci Kyeong Sook Choi Hyeseong Cho ndrew Thorbum You-Sun Kim
in
631/80/458/1648
,
631/80/82/2344
,
692/699/67/1059/99
2015
Receptor-interacting protein kinase-3 (RIP3 or RIPK3) is an essential part of the cellular machinery that executes "programmed" or "regulated" necrosis. Here we show that programmed necrosis is activated in response to many chemotherapeutic agents and contributes to chemotherapy-induced cell death. However, we show that RIP3 expres- sion is often silenced in cancer cells due to genomic methylation near its transcriptional start site, thus RIP3-depen- dent activation of MLKL and downstream programmed necrosis during chemotherapeutic death is largely repressed. Nevertheless, treatment with hypomethylating agents restores RIP3 expression, and thereby promotes sensitivity to chemotherapeutics in a RIP3-dependent manner. RIP3 expression is reduced in tumors compared to normal tissue in 85% of breast cancer patients, suggesting that RIP3 deficiency is positively selected during tumor growth/develop- ment. Since hypomethylating agents are reasonably well-tolerated in patients, we propose that RIP3-deficient cancer patients may benefit from receiving hypomethylating agents to induce RIP3 expression prior to treatment with con- ventional chemotherapeutics.
Journal Article
Characterization and targeting of malignant stem cells in patients with advanced myelodysplastic syndromes
2018
Myelodysplastic syndrome (MDS) is a chronic hematologic disorder that frequently evolves to more aggressive stages and in some cases leads to acute myeloid leukemia (AML). MDS arises from mutations in hematopoietic stem cells (HSCs). Thus, to define optimal therapies, it is essential to understand molecular events driving HSC pathogenesis. In this study, we report that during evolution of MDS, malignant HSCs activate distinct cellular programs that render such cells susceptible to therapeutic intervention. Specifically, metabolic analyses of the MDS stem cell compartment show a profound activation of protein synthesis machinery and increased oxidative phosphorylation. Pharmacological targeting of protein synthesis and oxidative phosphorylation demonstrated potent and selective eradication of MDS stem cells in primary human patient specimens. Taken together, our findings indicate that MDS stem cells are reliant on specific metabolic events and that such properties can be targeted prior to the onset of clinically significant AML, during antecedent MDS.
Myelodysplastic syndrome (MDS) arises from mutations in hematopoietic stem cells (HSCs). Here, the authors demonstrate that HSCs in higher-risk MDS express the surface marker CD123 and are characterized by activation of protein synthesis machinery and increased oxidative phosphorylation.
Journal Article
ATM/G6PD-driven redox metabolism promotes FLT3 inhibitor resistance in acute myeloid leukemia
by
Serkova, Natalie J.
,
Pollyea, Daniel A.
,
Adane, Biniam
in
Animals
,
Antineoplastic Agents - pharmacology
,
Ataxia Telangiectasia Mutated Proteins - antagonists & inhibitors
2016
Activating mutations in FMS-like tyrosine kinase 3 (FLT3) are common in acute myeloid leukemia (AML) and drive leukemic cell growth and survival. Although FLT3 inhibitors have shown considerable promise for the treatment of AML, they ultimately fail to achieve long-term remissions as monotherapy. To identify genetic targets that can sensitize AML cells to killing by FLT3 inhibitors, we performed a genome-wide RNA interference (RNAi)-based screen that identified ATM (ataxia telangiectasia mutated) as being synthetic lethal with FLT3 inhibitor therapy. We found that inactivating ATM or its downstream effector glucose 6-phosphate dehydrogenase (G6PD) sensitizes AML cells to FLT3 inhibitor induced apoptosis. Examination of the cellular metabolome showed that FLT3 inhibition by itself causes profound alterations in central carbon metabolism, resulting in impaired production of the antioxidant factor glutathione, which was further impaired by ATM or G6PD inactivation. Moreover, FLT3 inhibition elicited severe mitochondrial oxidative stress that is causative in apoptosis and is exacerbated by ATM/G6PD inhibition. The use of an agent that intensifies mitochondrial oxidative stress in combination with a FLT3 inhibitor augmented elimination of AML cells in vitro and in vivo, revealing a therapeutic strategy for the improved treatment of FLT3 mutated AML.
Journal Article
The sonic hedgehog factor GLI1 imparts drug resistance through inducible glucuronidation
2014
A new mechanism by which acute myeloid leukaemia patients become resistant to Ara-C and a newer treatment, ribavirin, is uncovered; these drugs can be glucuronidated and thereby inactivated by members of the UDP glucuronosyltransferase family of enzymes activated through GLI1 signalling.
A cancer drug resistance mechanism
This study reports a previously unknown form of resistance to treatments for acute myeloid leukaemia, and identifies an agent that can restore drug sensitivity to resistant cells. Patients in a Phase II clinical trial responded well to treatment with cytarabine (Ara-C) and a newer drug, ribavirin, but then became unresponsive. Katherine Borden and colleagues show that the two drugs became glucuronidated and thereby inactive. Resistant tumour cells contained high levels of GLI1, a factor involved in Sonic hedgehog signalling that specifically increases production of the UGT1A enzymes responsible for drug modification. Inhibition of GLI1 is able to overcome drug resistance, offering a potential strategy to combat drug resistance in some patients.
Drug resistance is a major hurdle in oncology. Responses of acute myeloid leukaemia (AML) patients to cytarabine (Ara-C)-based therapies are often short lived with a median overall survival of months
1
,
2
,
3
,
4
. Therapies are under development to improve outcomes and include targeting the eukaryotic translation initiation factor (eIF4E) with its inhibitor ribavirin
5
,
6
,
7
. In a Phase II clinical trial in poor prognosis AML
5
, ribavirin monotherapy yielded promising responses including remissions; however, all patients relapsed. Here we identify a novel form of drug resistance to ribavirin and Ara-C. We observe that the sonic hedgehog transcription factor glioma-associated protein 1 (GLI1) and the UDP glucuronosyltransferase (UGT1A) family of enzymes are elevated in resistant cells. UGT1As add glucuronic acid to many drugs, modifying their activity in diverse tissues
8
. GLI1 alone is sufficient to drive UGT1A-dependent glucuronidation of ribavirin and Ara-C, and thus drug resistance. Resistance is overcome by genetic or pharmacological inhibition of GLI1, revealing a potential strategy to overcome drug resistance in some patients.
Journal Article
Therapeutic resistance in acute myeloid leukemia cells is mediated by a novel ATM/mTOR pathway regulating oxidative phosphorylation
by
Goodspeed, Andrew
,
Gregory, Mark A
,
Zaberezhnyy, Vadym
in
Acute myeloid leukemia
,
Apoptosis
,
Bone marrow
2022
While leukemic cells are susceptible to various therapeutic insults, residence in the bone marrow microenvironment typically confers protection from a wide range of drugs. Thus, understanding the unique molecular changes elicited by the marrow is of critical importance toward improving therapeutic outcomes. In this study, we demonstrate that aberrant activation of oxidative phosphorylation serves to induce therapeutic resistance in FLT3 mutant human AML cells challenged with FLT3 inhibitor drugs. Importantly, our findings show that AML cells are protected from apoptosis following FLT3 inhibition due to marrow-mediated activation of ATM, which in turn upregulates oxidative phosphorylation via mTOR signaling. mTOR is required for the bone marrow stroma-dependent maintenance of protein translation, with selective polysome enrichment of oxidative phosphorylation transcripts, despite FLT3 inhibition. To investigate the therapeutic significance of this finding, we tested the mTOR inhibitor everolimus in combination with the FLT3 inhibitor quizartinib in primary human AML xenograft models. While marrow resident AML cells were highly resistant to quizartinib alone, the addition of everolimus induced profound reduction in tumor burden and prevented relapse. Taken together, these data provide a novel mechanistic understanding of marrow-based therapeutic resistance and a promising strategy for improved treatment of FLT3 mutant AML patients.
Journal Article
Pronounced Hypoxia in Models of Murine and Human Leukemia: High Efficacy of Hypoxia-Activated Prodrug PR-104
by
Kantarjian, Hagop
,
Borthakur, Gautam
,
Shpall, Elizabeth
in
Acute lymphoblastic leukemia
,
Animal models
,
Animals
2011
Recent studies indicate that interactions between leukemia cells and the bone marrow (BM) microenvironment promote leukemia cell survival and confer resistance to anti-leukemic drugs. There is evidence that BM microenvironment contains hypoxic areas that confer survival advantage to hematopoietic cells. In the present study we investigated whether hypoxia in leukemic BM contributes to the protective role of the BM microenvironment. We observed a marked expansion of hypoxic BM areas in immunodeficient mice engrafted with acute lymphoblastic leukemia (ALL) cells. Consistent with this finding, we found that hypoxia promotes chemoresistance in various ALL derived cell lines. These findings suggest to employ hypoxia-activated prodrugs to eliminate leukemia cells within hypoxic niches. Using several xenograft models, we demonstrated that administration of the hypoxia-activated dinitrobenzamide mustard, PR-104 prolonged survival and decreased leukemia burden of immune-deficient mice injected with primary acute lymphoblastic leukemia cells. Together, these findings strongly suggest that targeting hypoxia in leukemic BM is feasible and may significantly improve leukemia therapy.
Journal Article
In silico predicted compound targeting the IQGAP1-GRD domain selectively inhibits growth of human acute myeloid leukemia
2024
Acute myeloid leukemia (AML) is fatal in the majority of adults. Identification of new therapeutic targets and their pharmacologic modulators are needed to improve outcomes. Previous studies had shown that immunization of rabbits with normal peripheral WBCs that had been incubated with fluorodinitrobenzene elicited high titer antibodies that bound to a spectrum of human leukemias. We report that proteomic analyses of immunoaffinity-purified lysates of primary AML cells showed enrichment of scaffolding protein IQGAP1. Immunohistochemistry and gene-expression analyses confirmed IQGAP1 mRNA overexpression in various cytogenetic subtypes of primary human AML compared to normal hematopoietic cells. shRNA knockdown of IQGAP1 blocked proliferation and clonogenicity of human leukemia cell-lines. To develop small molecules targeting IQGAP1 we performed
in-silico
screening of 212,966 compounds, selected 4 hits targeting the IQGAP1-GRD domain, and conducted SAR of the ‘fittest hit’ to identify UR778Br, a prototypical agent targeting IQGAP1. UR778Br inhibited proliferation, induced apoptosis, resulted in G2/M arrest, and inhibited colony formation by leukemia cell-lines and primary-AML while sparing normal marrow cells. UR778Br exhibited favorable ADME/T profiles and drug-likeness to treat AML. In summary, AML shows response to IQGAP1 inhibition, and UR778Br, identified through
in-silico
studies, selectively targeted AML cells while sparing normal marrow.
Journal Article
Therapy-Resistant Acute Myeloid Leukemia Stem Cells Are Resensitized to Venetoclax + Azacitidine by Targeting Fatty Acid Desaturases 1 and 2
by
Jordan, Craig T.
,
D’Alessandro, Angelo
,
Stevens, Brett M.
in
Acute myeloid leukemia
,
Cancer therapies
,
Chemotherapy
2023
Recent advances in targeting leukemic stem cells (LSCs) using venetoclax with azacitidine (ven + aza) has significantly improved outcomes for de novo acute myeloid leukemia (AML) patients. However, patients who relapse after traditional chemotherapy are often venetoclax-resistant and exhibit poor clinical outcomes. We previously described that fatty acid metabolism drives oxidative phosphorylation (OXPHOS) and acts as a mechanism of LSC survival in relapsed/refractory AML. Here, we report that chemotherapy-relapsed primary AML displays aberrant fatty acid and lipid metabolism, as well as increased fatty acid desaturation through the activity of fatty acid desaturases 1 and 2, and that fatty acid desaturases function as a mechanism of recycling NAD+ to drive relapsed LSC survival. When combined with ven + aza, the genetic and pharmacologic inhibition of fatty acid desaturation results in decreased primary AML viability in relapsed AML. This study includes the largest lipidomic profile of LSC-enriched primary AML patient cells to date and indicates that inhibition of fatty acid desaturation is a promising therapeutic target for relapsed AML.
Journal Article
Predictive Models for Long Term Survival of AML Patients Treated with Venetoclax and Azacitidine or 7+3 Based on Post Treatment Events and Responses: Retrospective Cohort Study
by
Dale, Justin
,
Markson, Frank R
,
Coates, James W
in
Clinical decision making
,
Datasets
,
Fines & penalties
2024
The treatment of acute myeloid leukemia (AML) in older or unfit patients typically involves a regimen of venetoclax plus azacitidine (ven/aza). Toxicity and treatment responses are highly variable following treatment initiation and clinical decision-making continually evolves in response to these as treatment progresses. To improve clinical decision support (CDS) following treatment initiation, predictive models based on evolving and dynamic toxicities, disease responses, and other features should be developed.
This study aims to generate machine learning (ML)-based predictive models that incorporate individual predictors of overall survival (OS) for patients with AML, based on clinical events occurring after the initiation of ven/aza or 7+3 regimen.
Data from 221 patients with AML, who received either the ven/aza (n=101 patients) or 7+3 regimen (n=120 patients) as their initial induction therapy, were retrospectively analyzed. We performed stratified univariate and multivariate analyses to quantify the association between toxicities, hospital events, and short-term disease responses and OS for the 7+3 and ven/aza subgroups separately. We compared the estimates of confounders to assess potential effect modifications by treatment. 17 ML-based predictive models were developed. The optimal predictive models were selected based on their predictability and discriminability using cross-validation. Uncertainty in the estimation was assessed through bootstrapping.
The cumulative incidence of posttreatment toxicities varies between the ven/aza and 7+3 regimen. A variety of laboratory features and clinical events during the first 30 days were differentially associated with OS for the two treatments. An initial transfer to intensive care unit (ICU) worsened OS for 7+3 patients (aHR 1.18, 95% CI 1.10-1.28), while ICU readmission adversely affected OS for those on ven/aza (aHR 1.24, 95% CI 1.12-1.37). At the initial follow-up, achieving a morphologic leukemia free state (MLFS) did not affect OS for ven/aza (aHR 0.99, 95% CI 0.94-1.05), but worsened OS following 7+3 (aHR 1.16, 95% CI 1.01-1.31) compared to that of complete remission (CR). Having blasts over 5% at the initial follow-up negatively impacted OS for both 7+3 (P<.001) and ven/aza (P<.001) treated patients. A best response of CR and CR with incomplete recovery (CRi) was superior to MLFS and refractory disease after ven/aza (P<.001), whereas for 7+3, CR was superior to CRi, MLFS, and refractory disease (P<.001), indicating unequal outcomes. Treatment-specific predictive models, trained on 120 7+3 and 101 ven/aza patients using over 114 features, achieved survival AUCs over 0.70.
Our findings indicate that toxicities, clinical events, and responses evolve differently in patients receiving ven/aza compared with that of 7+3 regimen. ML-based predictive models were shown to be a feasible strategy for CDS in both forms of AML treatment. If validated with larger and more diverse data sets, these findings could offer valuable insights for developing AML-CDS tools that leverage posttreatment clinical data.
Journal Article