Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5
result(s) for
"Josen, Manjit"
Sort by:
Abnormal myocardial work in children with Kawasaki disease
2021
Kawasaki disease (KD) can be associated with high morbidity and mortality due to coronary artery aneurysms formation and myocardial dysfunction. Aim of this study was to evaluate the diagnostic performance of non-invasive myocardial work in predicting subtle myocardial abnormalities in Kawasaki disease (KD) children with coronary dilatation (CADL). A total of 100 patients (age 8.7 ± 5 years) were included: 45 children with KD and CADL (KD/CADL) (Z-score > 2.5), 45 age-matched controls (CTRL) and, finally, an additional group of 10 children with KD in absence of coronary dilatation (KD group). Left ventricular (LV) systolic function and global longitudinal strain (GLS) were assessed. Global myocardial work index (MWI) was calculated as the area of the LV pressure-strain loops. From MWI, global Constructive Work (MCW), Wasted Work (MWW) and Work Efficiency (MWE) were estimated. Despite normal LV systolic function by routine echocardiography, KD/CADL patients had lower MWI (1433.2 ± 375.8 mmHg% vs 1752.2 ± 265.7 mmHg%, p < 0.001), MCW (1885.5 ± 384.2 mmHg% vs 2175.9 ± 292.4 mmHg%, p = 0.001) and MWE (994.0 ± 4.8% vs 95.9 ± 2.0%, p = 0.030) compared to CTRL. Furthermore, MWI was significantly reduced in children belonging to the KD group in comparison with controls (KD: 1498.3 ± 361.7 mmHg%; KD vs CTRL p = 0.028) and was comparable between KD/CADL and KD groups (KD/CADL vs KD p = 0.896). Moreover, KD/CADL patients with normal GLS (n = 38) preserved significant differences in MWI and MCW in comparison with CTRL
.
MWI, MCW and MWE were significantly reduced in KD children despite normal LVEF and normal GLS. These abnormalities seems independent from CADL. Thus, in KD with normal LVEF and normal GLS, estimation of MWI may be a more sensitive indicator of myocardial dysfunction.
Journal Article
Pure Aortic Regurgitation in Pediatric Patients
by
Avesani, Martina
,
Sabatino, Jolanda
,
Borrelli, Nunzia
in
Adolescent
,
Aorta
,
Aortic Valve - diagnostic imaging
2019
Aortic regurgitation (AR) continues to be an important cause of morbidity and mortality in pediatric patients. Although echocardiographic parameters are well established for the adults, there are no clear cut-off values for AR severity in children. Cardiac magnetic resonance (CMR) imaging is considered a “gold standard” for a quantitative evaluation of the AR, but it is not widely available. This study assesses which echo parameter can accurately define AR severity as assessed by CMR in pediatric patients. A total of 27 pediatric patients (12 ± 3 years, range 6 to 18 years) with different degree of AR underwent echo assessment within an average of 35 days from CMR. CMR included phase-contrast velocity-encoded imaging for the measurement of regurgitant fraction (RF). Severe AR was defined as RF >33%. Echo evaluation included vena contracta, pressure half time, the ratio between the AR jet and the left ventricular outflow tract diameter (jet/left ventricular outflow tract), presence of holodiastolic reversal flow in abdominal aorta, the ratio between the velocity-time integral of the reversal flow over the forward flow in descending aorta (echoRF). Among the studied parameters, the strongest predictor of severe AR, as assessed by CMR, was echoRF. Receiver-operating characteristic curve showed, for a cutoff >0.38, an area under the curve of 0.886 (p <0.0001), a sensitivity of 71%, and a specificity of 100%. Correlation coefficient between echoRF and RF was R = 0.929 (p <0.0001). In conclusion, echoRF is a strong echo-Doppler marker of severe AR in the pediatric population. This parameter should be routinely added in the standard echo evaluation of pediatric patients with AR.
Journal Article
Segmental and global longitudinal strain differences between Kawasaki disease and multi-system inflammatory syndrome in children
2023
Background:Multi-system inflammatory syndrome in children and Kawasaki disease have overlapping clinical features but comparative echocardiographic studies are lacking.Methods:We reviewed echocardiography findings of all multi-system inflammatory syndrome cases between 1st April and 31st July, 2020 and typical Kawasaki disease patients with coronary arteries abnormalities consecutively followed between 1st October, 2016 and June 30th, 2019.Results:We included 40 multi-system inflammatory syndrome children (25 males, 62.5%) and 45 Kawasaki disease patients (31 males, 68.9%) at a mean age of 6.4 years old and 8 years old, respectively. Four out of 40 multi-system inflammatory syndrome children had coronary arteries abnormalities. Left ventricle ejection fraction was normal in both groups. Global longitudinal strain was normal although Kawasaki disease group had significantly lower values (–20.0 versus –21.7%; p = 0.02). Basal segments were the most affected in Kawasaki disease patients with significant differences in the basal anterior, anterolateral, and anteroseptal strain: –18.2 versus –23.0% (p = 0.002), –16.7 versus –22.0% (p < 0.001), –16.7 versus –19.5% (p = 0.034), respectively. The basal anterolateral and anteroseptal segments in Kawasaki disease patients were the only ones with an absolute reduction of longitudinal strain (–16.7% both) consistent with the greater left main coronary involvement in this cohort.Conclusions:Our findings are consistent with the transient cardiac involvement in multi-system inflammatory syndrome, as opposed to the subtle and chronic myocardial involvement in Kawasaki disease children with coronary arteries abnormalities. We speculate that the mechanism of cardiac impairment in the few multi-system inflammatory syndrome children with reduced global longitudinal strain is not related to coronary arteries abnormalities.
Journal Article
Left Atrial Strain to Identify Diastolic Dysfunction in Children with Cardiomyopathies
2019
Background: Left ventricular (LV) diastolic dysfunction (DD) carries worse prognosis in childhood. 2-dimensional (2-D) left atrial (LA) strain accurately categorizes DD in adults but its role in children is unknown. Thus, the aim of this study is to investigate whether LA strain and strain rate could diagnose and classify DD in children with dilated (CMD), hypertrophic (HCM) and restrictive (RCM) cardiomyopathies (CM). Methods and Results: The study includes 136 children (aged 8.8 ± 6 years): 44 with DCM, 40 with HCM, 7 with RCM and 45 healthy controls (CTRL). They underwent standard echocardiographic examination and 2-D speckle-tracking analyses (LV longitudinal peak systolic strain (LS), LA peak systolic strain and strain rate). No significant differences in mitral E/A and pulmonary S/D ratios were observed among the four groups. Although E/E’ and indexed left atrial volumes were found to be significantly higher in HCM, DCM and RCM compared to CTRL (p < 0.001), they showed no significant difference among the three CM groups. LV LS values were significantly reduced in CM vs CTRL (p < 0.001) and in DCM vs HCM (p < 0.01), with no other differences between the remaining groups. LA peak systolic strain and strain rate values showed a steady and significant decrease with worsening of DD. Receiver Operating Characteristics (ROC) curves showed area under the curve of 0.976 (p < 0.001) for LA strain and 0.946 (p < 0.001) for LA strain rate, to distinguish CTRL from CMs. Conclusions: LA strain and strain rate could be a promising tool to better understand and classify DD in children with cardiomyopathies, opening the way to its clinical use.
Journal Article
Total isovolumic time relates to exercise capacity in patients with transposition of the great arteries late after atrial switch procedures
by
Inuzuka, Ryo
,
Giannakoulas, Georgios
,
Gatzoulis, Michael A.
in
Adult
,
Cardiac Surgical Procedures
,
Case-Control Studies
2012
Systemic right ventricular systolic dysfunction is common late after atrial switch surgery for transposition of the great arteries. Total isovolumic time is the time that the ventricle is neither ejecting nor filling and is calculated without relying on geometric assumptions. We assessed resting total isovolumic time in this population and its relationship to exercise capacity.
A total of 40 adult patients with transposition of the great arteries after atrial switch - and 10 healthy controls - underwent transthoracic echocardiography and cardiopulmonary exercise testing from January, 2006 to January, 2009. Resting total isovolumic time was measured in seconds per minute: 60 minus total ejection time plus total filling time.
The mean age was 31.6 plus or minus 7.6 years, and 38.0% were men. There were 16 patients (40%) who had more than or equal to moderate systolic dysfunction of the right ventricle. Intra- and inter-observer agreement was good for total isovolumic time, which was significantly prolonged in patients compared with controls (12.0 plus or minus 3.9 seconds per minute versus 6.0 plus or minus 1.8 seconds per minute, p-value less than 0.001) and correlated significantly with peak oxygen consumption (r equals minus 0.63, p-value less than 0.001). The correlation strengthened (r equals minus 0.73, p-value less than 0.001) after excluding seven patients with exercise-induced cyanosis. No relationship was found between exercise capacity and right ventricular ejection fraction or long-axis amplitude.
Resting isovolumic time is prolonged after atrial switch for patients with transposition of the great arteries. It is highly reproducible and relates well to exercise capacity.
Journal Article