Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
111
result(s) for
"Joshi, Sumit"
Sort by:
Corn steep liquor as a nutritional source for biocementation and its impact on concrete structural properties
2018
Abstract
Microbial-induced carbonate precipitation (MICP) has a potential to improve the durability properties and remediate cracks in concrete. In the present study, the main emphasis is placed upon replacing the expensive laboratory nutrient broth (NB) with corn steep liquor (CSL), an industrial by-product, as an alternate nutrient medium during biocementation. The influence of organic nutrients (carbon and nitrogen content) of CSL and NB on the chemical and structural properties of concrete structures is studied. It has been observed that cement-setting properties were unaffected by CSL organic content, while NB medium influenced it. Carbon and nitrogen content in concrete structures was significantly lower in CSL-treated specimens than in NB-treated specimens. Decreased permeability and increased compressive strength were reported when NB is replaced with CSL in bacteria-treated specimens. The present study results suggest that CSL can be used as a replacement growth medium for MICP technology at commercial scale.
Journal Article
Carbonate Mineral Formation by Microalgae: Precipitation Potential and Morphological Analysis
by
Romiani, Hadi Mohamadzadeh
,
Mavroulidou, Maria
,
Asadi, Afshin
in
Abiotic factors
,
Acid resistance
,
Acid resistance tests
2025
This study evaluated the ability of microalgae to produce carbonate minerals through CO2 uptake, in comparison with abiotic, direct chemical synthesis through CO2 absorption. A freshwater microalga (Synechococcus elongatus) isolated from garden soil in East Anglia, UK, was cultivated under laboratory conditions with CO2 injection to generate a bicarbonate-rich aqueous solution, in which Fe2+, Mg2+, and Ca2+ ions were added to facilitate carbonate formation. Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) analyses revealed distinct morphologies and mineral types. The algae-based process precipitated calcite, siderite, magnesite, and dolomite, whereas the abiotic process yielded, respectively, calcite, siderite, high-Mg calcite and nesquehonite. Biogenic minerals were finer and more morphologically diverse than their abiotically formed counterparts. The results indicated that microalgae produced 0.21 mol/L of calcium carbonate, compared to 0.51 mol/L obtained through abiotic CO2 sequestration, and a comparable yield of about 0.25 mol/L reported for Sporosarcina pasteurii-induced precipitation. Acid resistance tests showed that algae-induced minerals had similar or improved resistance to acidic conditions compared to minerals formed through abiotic CO2 consumption. Overall, despite slower kinetics, algae-induced carbonate precipitation offers advantages for soil stabilization by biocementation in the context of environmental sustainability, climate change mitigation and circular economy.
Journal Article
BILATERALISM AND FREE TRADE
2006
We study a setting with many countries; in each country there are firms that can sell in the domestic as well as foreign markets. Countries can sign bilateral free-trade agreements that lower import tariffs and thereby facilitate trade. We allow a country to sign any number of bilateral free-trade agreements. A profile of free-trade agreements defines the trading regime. Our principal finding is that, in symmetric settings, bilateralism is consistent with global free trade. We also explore the effects of asymmetries across countries and political economy considerations on the incentives to form trade agreements.
Journal Article
Prediction of Rain Attenuation and Impact of Rain in Wave Propagation at Microwave Frequency for Tropical Region (Uttarakhand, India)
by
Kestwal, Mukesh Chandra
,
Joshi, Sumit
,
Garia, Lalit Singh
in
Attenuation
,
India
,
Mathematical models
2014
The most classical approach of determining rain attenuation for radio-wave frequency has been to theoretically determine the specific attenuation. At frequency over 10 GHz, rain and precipitation can influence the attenuation a lot; the effect of atmospheric attenuation between the source and destination over wireless communication is of major concern and a proper site visit and proper method are required to control the attenuation level so that the performance can be increased. In this paper exponential model has been used to determine the attenuation level for k-region (India) which can be used for region having similar condition. The analyzed predicted attenuation data have been compared with ITU-R measured rain attenuation, and the results will provide useful estimation of rainfall attenuation on microwave links in tropical regions that have similar conditions as (Almora) Uttarakhand region.
Journal Article
PET Study of Sphingosine-1-phosphate Receptor 1 Expression in Response to S. aureus Infection
2021
Sphingosine-1-phosphate receptor 1 (S1PR1) plays a crucial role in infectious diseases. Targeting S1PR1 provides protection against pathogens, such as influenza viruses. This study is aimed at investigating S1PR1 in response to bacterial infection by assessing S1PR1 expression in S. aureus-infected mice. A rodent local muscle bacterial infection model was developed by injecting S. aureus to the lower hind limb of Balb/c mice. The changes of S1PR1 expression in response to bacterial infection and blocking treatment were assessed using ex vivo biodistribution and in vivo positron emission tomography (PET) after intravenous injection of an S1PR1-specific radiotracer [18F]TZ4877. The specificity of [18F]TZ4877 was assessed using S1PR1-specific antagonist, NIBR-0213, and S1PR1-specific DsiRNA pretreated the animals. Immunohistochemical studies were performed to confirm the increase of S1PR1 expression in response to infection. Ex vivo biodistribution data showed that the uptake of [18F]TZ4877 was increased 30.6%, 54.3%, 74.3%, and 115.3% in the liver, kidney, pancreas, and thymus of the infected mice, respectively, compared to that in normal control mice, indicating that S1PR1 is involved in the early immune response to bacterial infection. NIBR-0213 or S1PR1-specific DsiRNA pretreatment reduced the tissue uptake of [18F]TZ4877, suggesting that uptake of [18F]TZ4877 is specific. Our PET/CT study data also confirmed that infected mice have increased [18F]TZ4877 uptake in several organs comparing to that in normal control mice. Particularly, compared to control mice, a 39% increase of [18F]TZ4877 uptake was observed in the infected muscle of S. aureus mice, indicating that S1PR1 expression was directly involved in the inflammatory response to infection. Overall, our study suggested that S1PR1 plays an important role in the early immune response to bacterial infection. The uptake of [18F]TZ4877 is tightly correlated with the S1R1 expression in response to S. aureus infection. PET with S1PR1-specific radiotracer [18F]TZ4877 could provide a noninvasive tool for detecting the early S1PR1 immune response to infectious diseases.
Journal Article
Characterization of Glycolytic Enzymes - rAldolase and rEnolase of Leishmania donovani, Identified as Th1 Stimulatory Proteins, for Their Immunogenicity and Immunoprophylactic Efficacies against Experimental Visceral Leishmaniasis
2014
Th1 immune responses play an important role in controlling Visceral Leishmaniasis (VL) hence, Leishmania proteins stimulating T-cell responses in host, are thought to be good vaccine targets. Search of such antigens eliciting cellular responses in Peripheral blood mononuclear cells (PBMCs) from cured/exposed/Leishmania patients and hamsters led to the identification of two enzymes of glycolytic pathway in the soluble lysate of a clinical isolate of Leishmania donovani--Enolase (LdEno) and aldolase (LdAld) as potential Th1 stimulatory proteins. The present study deals with the molecular and immunological characterizations of LdEno and LdAld. The successfully cloned and purified recombinant proteins displayed strong ability to proliferate lymphocytes of cured hamsters' along with significant nitric-oxide production and generation of Th1-type cytokines (IFN-γ and IL-12) from stimulated PBMCs of cured/endemic VL patients. Assessment of their prophylactic potentials revealed ∼ 90% decrease in parasitic burden in rLdEno vaccinated hamsters against Leishmania challenge, strongly supported by an increase in mRNA expression levels of iNOS, IFN-γ, TNF-α and IL-12 transcripts along with extreme down-regulation of TGF-β, IL-4 and IL-10. However, animals vaccinated with rLdAld showed comparatively lesser prophylactic efficacy (∼ 65%) with inferior immunological response. Further, with a possible implication in vaccine design against VL, identification of potential T-cell epitopes of both the proteins was done using computational approach. Additionally, in-silico 3-D modelling of the proteins was done in order to explore the possibility of exploiting them as potential drug targets. The comparative molecular and immunological characterizations strongly suggest rLdEno as potential vaccine candidate against VL and supports the notion of its being effective T-cell stimulatory protein.
Journal Article
Immunogenicity and Protective Efficacy of T-Cell Epitopes Derived From Potential Th1 Stimulatory Proteins of Leishmania (Leishmania) donovani
by
Kumar, Vikash
,
Siddiqi, Mohammad Imran
,
Ali, Rafat
in
Antigens
,
Cell culture
,
Control programs
2019
Development of a suitable vaccine against visceral leishmaniasis (VL), a fatal parasitic disease, is considered to be vital for maintaining the success of kala-azar control programs. The fact that
-infected individuals generate life-long immunity offers a viable proposition in this direction. Our prior studies demonstrated that T-helper1 (Th1) type of cellular response was generated by six potential recombinant proteins
. elongation factor-2 (elF-2), enolase, aldolase, triose phosphate isomerase (TPI), protein disulfide isomerase (PDI) and p45, derived from a soluble antigenic fraction (89.9-97.1 kDa) of
promastigote, in treated
patients and golden hamsters and showed significant prophylactic potential against experimental VL. Moreover, since, it is well-known that our immune system, in general, triggers production of specific protective immunity in response to a small number of amino acids (peptide), this led to the identification of antigenic epitopes of the above-stated proteins utilizing immunoinformatics. Out of thirty-six, three peptides-P-10 (enolase), P-14, and P-15 (TPI) elicited common significant lymphoproliferative as well as Th1-biased cytokine responses both in golden hamsters and human subjects. Further, immunization with these peptides plus BCG offered 75% prophylactic efficacy with boosted cellular immune response in golden hamsters against
challenge which is indicative of their candidature as potential vaccine candidates.
Journal Article
Th1 Stimulatory Proteins of Leishmania donovani: Comparative Cellular and Protective Responses of rTriose Phosphate Isomerase, rProtein Disulfide Isomerase and rElongation Factor-2 in Combination with rHSP70 against Visceral Leishmaniasis
by
Jaiswal, Anil Kumar
,
Kushawaha, Pramod Kumar
,
Khare, Prashant
in
Animals
,
Antibodies, Protozoan - biosynthesis
,
Antigens
2014
In visceral leishmaniasis, the recovery from the disease is always associated with the generation of Th1-type of cellular responses. Based on this, we have previously identified several Th1-stimulatory proteins of Leishmania donovani -triose phosphate isomerase (TPI), protein disulfide isomerase (PDI) and elongation factor-2 (EL-2) etc. including heat shock protein 70 (HSP70) which induced Th1-type of cellular responses in both cured Leishmania patients/hamsters. Since, HSPs, being the logical targets for vaccines aimed at augmenting cellular immunity and can be early targets in the immune response against intracellular pathogens; they could be exploited as vaccine/adjuvant to induce long-term immunity more effectively. Therefore, in this study, we checked whether HSP70 can further enhance the immunogenicity and protective responses of the above said Th1-stimulatory proteins. Since, in most of the studies, immunogenicity of HSP70 of L. donovani was assessed in native condition, herein we generated recombinant HSP70 and tested its potential to stimulate immune responses in lymphocytes of cured Leishmania infected hamsters as well as in the peripheral blood mononuclear cells (PBMCs) of cured patients of VL either individually or in combination with above mentioned recombinant proteins. rLdHSP70 alone elicited strong cellular responses along with remarkable up-regulation of IFN-γ and IL-12 cytokines and extremely lower level of IL-4 and IL-10. Among the various combinations, rLdHSP70 + rLdPDI emerged as superior one augmenting improved cellular responses followed by rLdHSP70 + rLdEL-2. These combinations were further evaluated for its protective potential wherein rLdHSP70 + rLdPDI again conferred utmost protection (∼80%) followed by rLdHSP70 + rLdEL-2 (∼75%) and generated a strong cellular immune response with significant increase in the levels of iNOS transcript as well as IFN-γ and IL-12 cytokines which was further supported by the high level of IgG2 antibody in vaccinated animals. These observations indicated that vaccine(s) based on combination of HSP70 with Th1-stimulatory protein(s) may be a viable proposition against intracellular pathogens.
Journal Article
Assessment of the strength and swelling potential of soft soils before and after electrokinetic biocementation
by
Laguna Librado, Juan Antonio
,
Le Pen, Louis
,
Mavroulidou, Maria
in
Electrokinetics
,
Laboratories
,
Maintenance costs
2025
This paper presents results of a laboratory investigation to instruct the setting up of a field electrokinetic biocementation pilot trial in East England, enabled by UK railway owners and operators. The geological setting of the field trial area is highly heterogeneous, comprising a succession of soft marine fine-grained soil deposits, including swelling and organic soils. The unfavourable ground conditions cause serviceability problems and track deterioration due to the underlying soil volume changes/deformation incurring high annual maintenance costs. Although the water table is generally high, seasonal effects and extensive pumping are linked to a large part to the engineering problems. Ramboll UK and London South Bank University were commissioned to investigate the feasibility of electrokinetic biocementation as a method of mitigating these problems of the problematic soil site. In this paper, the proposed ground improvement methods are evaluated based on the effects of biostimulation/biocementation laboratory treatments on a soft soil undrained shear strength, as well as the plasticity characteristics and soil water retention curves of the soil before and after treatment, that can be used to interpret their swelling/shrinking potential under changing water table levels and saturation conditions.
Journal Article
Microbial healing of cracks in concrete: a review
by
Reddy, M. Sudhakara
,
Mukherjee, Abhijit
,
Joshi, Sumit
in
Bacillus - metabolism
,
Bacteria
,
Biochemistry
2017
Concrete is the most widely used construction material of the world and maintaining concrete structures from premature deterioration is proving to be a great challenge. Early age formation of micro-cracking in concrete structure severely affects the serviceability leading to high cost of maintenance. Apart from conventional methods of repairing cracks with sealants or treating the concrete with adhesive chemicals to prevent the cracks from widening, a microbial crack-healing approach has shown promising results. The unique feature of the microbial system is that it enables self-healing of concrete. The effectiveness of microbially induced calcium carbonate precipitation (MICCP) in improving durability of cementitious building materials, restoration of stone monuments and soil bioclogging is discussed. Main emphasis has been laid on the potential of bacteria-based crack repair in concrete structure and the applications of different bacterial treatments to self-healing cracks. Furthermore, recommendations to employ the MICCP technology at commercial scale and reduction in the cost of application are provided in this review.
Journal Article