Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
5 result(s) for "Joubert, Clémence"
Sort by:
Aging brain: the effect of combined cognitive and physical training on cognition as compared to cognitive and physical training alone - a systematic review
This review presents a critical examination of current knowledge of the impact of combined cognitive and physical training on cognition in healthy elderly subjects. The objectives are to evaluate the contribution of cognitive and physical training to the enhancement of cognition, and to determine the interest of combining these two training types in one intervention in terms of the benefits for cognition (direct and transfer), long-term maintenance, and transfer to daily living. To do so, a systematic electronic search was conducted in PubMed and Google Scholar. Exclusion criteria were animal and pathological aging studies. We focused on the shared and different behavioral impacts of these two types of training on cognition, as well as their functional and structural impact on the brain. The review indicates that both cognitive and physical training have an impact on cognition and on the brain. However, each type of training seems to preferentially enhance different cognitive functions and specifically impact both brain structure and function. Even though some results argue in favor of a complementarity between cognitive and physical training and the superiority of combined cognitive and physical training, the current state of knowledge does not permit any definitive conclusion. Thus, the present review indicates the need for additional investigations.
Behavioural and ERP Effects of Cognitive and Combined Cognitive and Physical Training on Working Memory and Executive Function in Healthy Older Adults
Cognitive and physical training have been shown to be effective in improving older adults’ cognition. However, it is not yet clear whether combined cognitive and physical training offers an advantage compared to cognitive training alone. Twenty-two older adults performed cognitive or combined cognitive and physical training in order to compare their effects on working memory event-related potentials (ERPs) and on working memory and executive function performance. Before and after eight weeks of training, performance in Plus Minus, Flanker, Updated Span, and Complex Span tasks was measured, and ERPs were registered during performance of an n-back task (0-back, 2-back, and 3-back). Post-training behavioural improvement was observed in Updated Span, Complex Span, and n-back tasks. During the n-back task, the N2/P3 complex was modulated by training, with a decrease in N2 amplitude and an increase in P3 amplitude in the post-training session compared to the pretraining session. These changes in ERP components suggest that both types of training potentially reduce the need for attentional control to perform the tasks correctly and increase working memory capacity. Thus, based on our data, no conclusion can be reached on the direct advantage of combined training, either at behavioural or at neural level. However, the present study might suggest an indirect advantage of such a combined training, because the cognitive benefit was found to be highly similar in both types of training. Using combined cognitive and physical training may produce a potential improvement in general fitness and an increased appeal of training.
Aging brain : the effect of combined cognitive an physical training on cognition as compared to cognitive and physical traning alone – a systematic review
This review presents a critical examination of current knowledge of the impact of combined cognitive and physical training on cognition in healthy elderly subjects. The objectives are to evaluate the contribution of cognitive and physical training to the enhancement of cogni-tion, and to determine the interest of combining these two training types in one intervention in terms of the benefits for cognition (direct and transfer), long-term maintenance, and transfer to daily living. To do so, a systematic electronic search was conducted in PubMed and Google Scholar. Exclusion criteria were animal and pathological aging studies. We focused on the shared and different behavioral impacts of these two types of training on cognition, as well as their functional and structural impact on the brain. The review indicates that both cognitive and physical training have an impact on cognition and on the brain. However, each type of training seems to preferentially enhance different cognitive functions and specifically impact both brain structure and function. Even though some results argue in favor of a complementarity between cognitive and physical training and the superiority of combined cognitive and physical training , the current state of knowledge does not permit any definitive conclusion. Thus, the present review indicates the need for additional investigations.
IRGM Is a Common Target of RNA Viruses that Subvert the Autophagy Network
Autophagy is a conserved degradative pathway used as a host defense mechanism against intracellular pathogens. However, several viruses can evade or subvert autophagy to insure their own replication. Nevertheless, the molecular details of viral interaction with autophagy remain largely unknown. We have determined the ability of 83 proteins of several families of RNA viruses (Paramyxoviridae, Flaviviridae, Orthomyxoviridae, Retroviridae and Togaviridae), to interact with 44 human autophagy-associated proteins using yeast two-hybrid and bioinformatic analysis. We found that the autophagy network is highly targeted by RNA viruses. Although central to autophagy, targeted proteins have also a high number of connections with proteins of other cellular functions. Interestingly, immunity-associated GTPase family M (IRGM), the most targeted protein, was found to interact with the autophagy-associated proteins ATG5, ATG10, MAP1CL3C and SH3GLB1. Strikingly, reduction of IRGM expression using small interfering RNA impairs both Measles virus (MeV), Hepatitis C virus (HCV) and human immunodeficiency virus-1 (HIV-1)-induced autophagy and viral particle production. Moreover we found that the expression of IRGM-interacting MeV-C, HCV-NS3 or HIV-NEF proteins per se is sufficient to induce autophagy, through an IRGM dependent pathway. Our work reveals an unexpected role of IRGM in virus-induced autophagy and suggests that several different families of RNA viruses may use common strategies to manipulate autophagy to improve viral infectivity.
Metabolomic Profiling of Pulmonary Neuroendocrine Neoplasms
Background/Objectives: Pulmonary neuroendocrine neoplasms (NENs) account for 20% of malignant lung tumors. Their management is challenging due to their diverse clinical features and aggressive nature. Currently, metabolomics offers a range of potential cancer biomarkers for diagnosis, monitoring tumor progression, and assessing therapeutic response. However, a specific metabolomic profile for early diagnosis of lung NENs has yet to be identified. This study aims to identify specific metabolomic profiles that can serve as biomarkers for early diagnosis of lung NENs. Methods: We measured 153 metabolites using liquid chromatography combined with mass spectrometry (LC-MS) in the plasma of 120 NEN patients and compared them with those of 71 healthy individuals. Additionally, we compared these profiles with those of 466 patients with non-small-cell lung cancers (NSCLCs) to ensure clinical relevance. Results: We identified 21 metabolites with consistently altered plasma concentrations in NENs. Compared to healthy controls, 18 metabolites were specific to carcinoid tumors, 5 to small-cell lung carcinomas (SCLCs), and 10 to large-cell neuroendocrine carcinomas (LCNECs). These findings revealed alterations in various metabolic pathways, such as fatty acid biosynthesis and beta-oxidation, the Warburg effect, and the citric acid cycle. Conclusions: Our study identified biomarker metabolites in the plasma of patients with each subtype of lung NENs and demonstrated significant alterations in several metabolic pathways. These metabolomic profiles could potentially serve as biomarkers for early diagnosis and better management of lung NENs.