Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
12
result(s) for
"Journeaux, Alexandra"
Sort by:
Expansion of myeloid suppressor cells and suppression of Lassa virus-specific T cells during fatal Lassa fever
2025
Lassa fever is a highly lethal hemorrhagic fever endemic to West Africa. In the absence of efficient prophylactic or therapeutic countermeasures, it poses a substantial threat to public health in this region. The pathophysiological mechanisms underlying the severity of the disease are poorly known because Lassa virus (LASV), its causative agent, has to be handled in BSL-4 laboratories and access to clinical samples is difficult. The control of Lassa fever is associated with a rapid and well-balanced immune response and viral clearance. However, severe disease is characterized by uncontrolled innate immune activation and symptoms reminiscent of sepsis and a cytokine storm. In a model of cynomolgus monkeys infected with two different strains of the virus, one causing moderate disease and the other a lethal outcome, we show that the control of LASV infection is characterized by the induction of a LASV-specific T-cell response, whereas severity is associated with the expansion of suppressive myeloid cells, alterations of the stromal network of secondary lymphoid organs, and the anergy of specific T cells. These results suggest that T cells are crucial for the control of LASV and that immunomodulatory therapeutics, such as checkpoint inhibitors, could contribute to new therapeutic strategies to treat Lassa fever. They also highlight how immunosuppressive mechanisms described in sepsis and cancer patients may play a role in the pathogenicity of Lassa fever, as well as in other similar hemorrhagic fevers.
Journal Article
Fatal Lassa fever in cynomolgus monkeys is associated with systemic viral dissemination and inflammation
by
Germain, Clara
,
Journeaux, Alexandra
,
Lopez-Maestre, Hélène
in
Adrenal glands
,
Animal biology
,
Animals
2024
The pathogenesis of Lassa fever has not yet been fully deciphered, particularly as concerns the mechanisms determining whether acute infection is controlled or leads to catastrophic illness and death. Using a cynomolgus monkey model of Lassa virus (LASV) infection reproducing the different outcomes of the disease, we performed histological and transcriptomic studies to investigate the dynamics of LASV infection and the immune mechanisms associated with survival or death. Lymphoid organs are an early major reservoir for replicating virus during Lassa fever, with LASV entering through the cortical sinus of draining lymph nodes regardless of disease outcome. However, subsequent viral tropism varies considerably with disease severity, with viral dissemination limited almost entirely to lymphoid organs and immune cells during nonfatal Lassa fever. By contrast, the systemic dissemination of LASV to all organs and diverse cell types, leading to infiltrations with macrophages and neutrophils and an excessive inflammatory response, is associated with a fatal outcome. These results provide new insight into early viral dynamics and the host response to LASV infection according to disease outcome.
Journal Article
Rapid protection induced by a single-shot Lassa vaccine in male cynomolgus monkeys
2023
Lassa fever hits West African countries annually in the absence of licensed vaccine to limit the burden of this viral hemorrhagic fever. We previously developed MeV-NP, a single-shot vaccine protecting cynomolgus monkeys against divergent strains one month or more than a year before Lassa virus infection. Given the limited dissemination area during outbreaks and the risk of nosocomial transmission, a vaccine inducing rapid protection could be useful to protect exposed people during outbreaks in the absence of preventive vaccination. Here, we test whether the time to protection can be reduced after immunization by challenging measles virus pre-immune male cynomolgus monkeys sixteen or eight days after a single shot of MeV-NP. None of the immunized monkeys develop disease and they rapidly control viral replication. Animals immunized eight days before the challenge are the best controllers, producing a strong CD8 T-cell response against the viral glycoprotein. A group of animals was also vaccinated one hour after the challenge, but was not protected and succumbed to the disease as the control animals. This study demonstrates that MeV-NP can induce a rapid protective immune response against Lassa fever in the presence of MeV pre-existing immunity but can likely not be used as therapeutic vaccine.
Lassa virus vaccination is impeded by the limited capacity of vaccine candidates to induce rapid protection. In this study, the authors found that a single shot of a measles-based Lassa vaccine protected nonhuman primates 16 or 8 days after vaccination.
Journal Article
Autophagy Promotes Infectious Particle Production of Mopeia and Lassa Viruses
by
Krieger, Sophie
,
Tangy, Frédéric
,
Journeaux, Alexandra
in
Animals
,
Antibodies
,
Arenavirus - pathogenicity
2019
Lassa virus (LASV) and Mopeia virus (MOPV) are two closely related Old-World mammarenaviruses. LASV causes severe hemorrhagic fever with high mortality in humans, whereas no case of MOPV infection has been reported. Comparing MOPV and LASV is a powerful strategy to unravel pathogenic mechanisms that occur during the course of pathogenic arenavirus infection. We used a yeast two-hybrid approach to identify cell partners of MOPV and LASV Z matrix protein in which two autophagy adaptors were identified, NDP52 and TAX1BP1. Autophagy has emerged as an important cellular defense mechanism against viral infections but its role during arenavirus infection has not been shown. Here, we demonstrate that autophagy is transiently induced by MOPV, but not LASV, in infected cells two days after infection. Impairment of the early steps of autophagy significantly decreased the production of MOPV and LASV infectious particles, whereas a blockade of the degradative steps impaired only MOPV infectious particle production. Our study provides insights into the role played by autophagy during MOPV and LASV infection and suggests that this process could partially explain their different pathogenicity.
Journal Article
E3 Ligase ITCH Interacts with the Z Matrix Protein of Lassa and Mopeia Viruses and Is Required for the Release of Infectious Particles
2019
Lassa virus (LASV) and Mopeia virus (MOPV) are two closely related, rodent-born mammarenaviruses. LASV is the causative agent of Lassa fever, a deadly hemorrhagic fever endemic in West Africa, whereas MOPV is non-pathogenic in humans. The Z matrix protein of arenaviruses is essential to virus assembly and budding by recruiting host factors, a mechanism that remains partially defined. To better characterize the interactions involved, a yeast two-hybrid screen was conducted using the Z proteins from LASV and MOPV as a bait. The cellular proteins ITCH and WWP1, two members of the Nedd4 family of HECT E3 ubiquitin ligases, were found to bind the Z proteins of LASV, MOPV and other arenaviruses. The PPxY late-domain motif of the Z proteins is required for the interaction with ITCH, although the E3 ubiquitin-ligase activity of ITCH is not involved in Z ubiquitination. The silencing of ITCH was shown to affect the replication of the old-world mammarenaviruses LASV, MOPV, Lymphocytic choriomeningitis virus (LCMV) and to a lesser extent Lujo virus (LUJV). More precisely, ITCH was involved in the egress of virus-like particles and the release of infectious progeny viruses. Thus, ITCH constitutes a novel interactor of LASV and MOPV Z proteins that is involved in virus assembly and release.
Journal Article
Lassa fever in Benin: description of the 2014 and 2016 epidemics and genetic characterization of a new Lassa virus
by
Saizonou, Raoul
,
Fichet-Calvet, Elisabeth
,
Pannetier, Delphine
in
Adult
,
Antibodies, Viral
,
Antibodies, Viral - blood
2020
We report two outbreaks of Lassa fever that occurred in Benin in 2014 and 2016 with 20 confirmed cases and 50% (10/20) mortality. Benin was not previously considered to be an endemic country for Lassa fever, resulting in a delay to diagnose the disease and its human transmission. Molecular investigations showed the viral genomes to be similar to that of the Togo strain, which is genetically very different from other known strains and confirms the existence of a new lineage. Endemic circulation of Lassa virus in a new territory and the genetic diversity thus confirm that this virus represents a growing threat for West African people. Given the divergence of the Benin strain from the prototypic Josiah Sierra Leone strain frequently used to generate vaccine candidates, the efficacy of vaccine candidates should also be demonstrated with this strain.
Journal Article
Systemic viral spreading and defective host responses are associated with fatal Lassa fever in macaques
2021
Lassa virus (LASV) is endemic in West Africa and induces a viral hemorrhagic fever (VHF) with up to 30% lethality among clinical cases. The mechanisms involved in control of Lassa fever or, in contrast, the ensuing catastrophic illness and death are poorly understood. We used the cynomolgus monkey model to reproduce the human disease with asymptomatic to mild or fatal disease. After initial replication at the inoculation site, LASV reached the secondary lymphoid organs. LASV did not spread further in nonfatal disease and was rapidly controlled by balanced innate and T-cell responses. Systemic viral dissemination occurred during severe disease. Massive replication, a cytokine/chemokine storm, defective T-cell responses, and multiorgan failure were observed. Clinical, biological, immunological, and transcriptomic parameters resembled those observed during septic-shock syndrome, suggesting that similar pathogenesis is induced during Lassa fever. The outcome appears to be determined early, as differentially expressed genes in PBMCs were associated with fatal and non-fatal Lassa fever outcome very early after infection. These results provide a full characterization and important insights into Lassa fever pathogenesis and could help to develop early diagnostic tools.Baillet et al. use the cynomolgus monkey model to model Lassa virus and associated Lassa fever (LF). They provide a full characterisation of LF pathogenesis with the aim of assisting the development of early diagnostic tools.
Journal Article
Immunogenicity, safety, and tolerability of a recombinant measles-vectored Lassa fever vaccine: a randomised, placebo-controlled, first-in-human trial
2023
Lassa fever is a substantial health burden in west Africa. We evaluated the safety, tolerability, and immunogenicity of a recombinant, live-attenuated, measles-vectored Lassa fever vaccine candidate (MV-LASV).
This first-in-human phase 1 trial—consisting of an open-label dose-escalation stage and an observer-blinded, randomised, placebo-controlled treatment stage—was conducted at a single site at the University of Antwerp, Antwerp, Belgium, and involved healthy adults aged 18–55 years. Participants in the dose-escalation stage were sequentially assigned to a low-dose group (two intramuscular doses of MV-LASV at 2 × 104 times the median tissue culture infectious dose) or a high-dose group (two doses at 1 × 105 times the median tissue culture infectious dose). Participants in the double-blinded treatment stage were randomly assigned in a 2:2:1 ratio to receive low dose, high dose, or placebo. The primary endpoint was the rate of solicited and unsolicited adverse events up to study day 56 and was assessed in all participants who received at least one dose of investigational product. The trial is registered with ClinicalTrials.gov, NCT04055454, and the European Union Drug Regulating Authorities Clinical Trials Database, 2018-003647-40, and is complete.
Between Sept 26, 2019, and Jan 20, 2020, 60 participants were enrolled and assigned to receive placebo (n=12) or MV-LASV (n=48). All 60 participants received at least one study treatment. Most adverse events occurred during the treatment phase, and frequencies of total solicited or unsolicited adverse events were similar between treatment groups, with 96% of participants in the low-dose group, 100% of those in the high-dose group, and 92% of those in the placebo group having any solicited adverse event (p=0·6751) and 76% of those in the low-dose group, 70% of those in the high-dose group, and 100% of those in the placebo group having any unsolicited adverse event (p=0·1047). The only significant difference related to local solicited adverse events, with higher frequencies observed in groups receiving MV-LASV (24 [96%] of 25 participants in the low-dose group; all 23 [100%] participants in the high-dose group) than in the placebo group (6 [50%] of 12 participants; p=0·0001, Fisher-Freeman-Halton test). Adverse events were mostly of mild or moderate severity, and no serious adverse events were observed. MV-LASV also induced substantial concentrations of LASV-specific IgG (geometric mean titre 62·9 EU/ml in the low-dose group and 145·9 EU/ml in the high-dose group on day 42).
MV-LASV showed an acceptable safety and tolerability profile, and immunogenicity seemed to be unaffected by pre-existing immunity against the vector. MV-LASV is therefore a promising candidate for further development.
Coalition for Epidemic Preparedness Innovations.
Journal Article
Immunogenicity, safety and tolerability of a recombinant measles-vectored Lassa vaccine: A randomised, placebo-controlled, first-in-human trial
2023
BackgroundLassa fever is a substantial health burden in west Africa. We evaluated the safety, tolerability, and immunogenicity of a recombinant, live-attenuated, measles-vectored Lassa fever vaccine candidate (MV-LASV).MethodsThis first-in-human phase 1 trial—consisting of an open-label dose-escalation stage and an observer-blinded, randomised, placebo-controlled treatment stage—was conducted at a single site at the University of Antwerp, Antwerp, Belgium, and involved healthy adults aged 18–55 years. Participants in the dose-escalation stage were sequentially assigned to a low-dose group (two intramuscular doses of MV-LASV at 2 × 104 times the median tissue culture infectious dose) or a high-dose group (two doses at 1 × 105 times the median tissue culture infectious dose). Participants in the double-blinded treatment stage were randomly assigned in a 2:2:1 ratio to receive low dose, high dose, or placebo. The primary endpoint was the rate of solicited and unsolicited adverse events up to study day 56 and was assessed in all participants who received at least one dose of investigational product. The trial is registered with ClinicalTrials.gov, NCT04055454, and the European Union Drug Regulating Authorities Clinical Trials Database, 2018-003647-40, and is complete.FindingsBetween Sept 26, 2019, and Jan 20, 2020, 60 participants were enrolled and assigned to receive placebo (n=12) or MV-LASV (n=48). All 60 participants received at least one study treatment. Most adverse events occurred during the treatment phase, and frequencies of total solicited or unsolicited adverse events were similar between treatment groups, with 96% of participants in the low-dose group, 100% of those in the high-dose group, and 92% of those in the placebo group having any solicited adverse event (p=0·6751) and 76% of those in the low-dose group, 70% of those in the high-dose group, and 100% of those in the placebo group having any unsolicited adverse event (p=0·1047). The only significant difference related to local solicited adverse events, with higher frequencies observed in groups receiving MV-LASV (24 [96%] of 25 participants in the low-dose group; all 23 [100%] participants in the high-dose group) than in the placebo group (6 [50%] of 12 participants; p=0·0001, Fisher-Freeman-Halton test). Adverse events were mostly of mild or moderate severity, and no serious adverse events were observed. MV-LASV also induced substantial concentrations of LASV-specific IgG (geometric mean titre 62·9 EU/ml in the low-dose group and 145·9 EU/ml in the high-dose group on day 42).InterpretationMV-LASV showed an acceptable safety and tolerability profile, and immunogenicity seemed to be unaffected by pre-existing immunity against the vector. MV-LASV is therefore a promising candidate for further development.FundingCoalition for Epidemic Preparedness Innovations.
Journal Article
Novel Antiviral Molecules against Ebola Virus Infection
by
Collados Rodríguez, Mila
,
David, Raul-Yusef Sanchez
,
Helynck, Olivier
in
Animals
,
Antiviral agents
,
Antiviral Agents - pharmacology
2023
Infection with Ebola virus (EBOV) is responsible for hemorrhagic fever in humans with a high mortality rate. Combined efforts of prevention and therapeutic intervention are required to tackle highly variable RNA viruses, whose infections often lead to outbreaks. Here, we have screened the 2P2I3D chemical library using a nanoluciferase-based protein complementation assay (NPCA) and isolated two compounds that disrupt the interaction of the EBOV protein fragment VP35IID with the N-terminus of the dsRNA-binding proteins PKR and PACT, involved in IFN response and/or intrinsic immunity, respectively. The two compounds inhibited EBOV infection in cell culture as well as infection by measles virus (MV) independently of IFN induction. Consequently, we propose that the compounds are antiviral by restoring intrinsic immunity driven by PACT. Given that PACT is highly conserved across mammals, our data support further testing of the compounds in other species, as well as against other negative-sense RNA viruses.
Journal Article