Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
13 result(s) for "Jozwik, C"
Sort by:
The MCP-4/MCP-1 ratio in plasma is a candidate circadian biomarker for chronic post-traumatic stress disorder
Post-traumatic stress disorder (PTSD) is psychiatric disease, which can occur following exposure to traumatic events. PTSD may be acute or chronic, and can have a waxing and waning course of symptoms. It has been hypothesized that proinflammatory cytokines and chemokines in the cerebrospinal fluid (CSF) or plasma might be mediators of the psychophysiological mechanisms relating a history of trauma exposure to changes in behavior and mental health disorders, and medical morbidity. Here we test the cytokine/chemokine hypothesis for PTSD by examining levels of 17 classical cytokines and chemokines in CSF, sampled at 0900 hours, and in plasma sampled hourly for 24 h. The PTSD and healthy control patients are from the NIMH Chronic PTSD and healthy control cohort, initially described by Bonne et al. (2011), in which the PTSD patients have relatively low comorbidity for major depressive disorder (MDD), drug or alcohol use. We find that in plasma, but not CSF, the bivariate MCP4 (CCL13)/ MCP1(CCL2) ratio is ca. twofold elevated in PTSD patients compared with healthy controls. The MCP-4/MCP-1 ratio is invariant over circadian time, and is independent of gender, body mass index or the age at which the trauma was suffered. By contrast, MIP-1β is a candidate biomarker for PTSD only in females, whereas TARC is a candidate biomarker for PTSD only in males. It remains to be discovered whether these disease-specific differences in circadian expression for these specific immune signaling molecules are biomarkers, surrogates, or drivers for PTSD, or whether any of these analytes could contribute to therapy.
Cardiac Glycosides Inhibit TNF-α/NF-κB Signaling by Blocking Recruitment of TNF Receptor-Associated Death Domain to the TNF Receptor
Digitoxin and structurally related cardiac glycoside drugs potently block activation of the TNF-α/NF-κB signaling pathway. We have hypothesized that the mechanism might be discovered by searching systematically for selective inhibitory action through the entire pathway. We report that the common action of these drugs is to block the TNF-α-dependent binding of TNF receptor 1 to TNF receptor-associated death domain. This drug action can be observed with native cells, such as HeLa, and reconstituted systems prepared in HEK293 cells. All other antiinflammatory effects of digitoxin on NF-κB and c-Jun N-terminal kinase pathways appear to follow from the blockade of this initial upstream signaling event.
Regions of Bacteriophage T4 and RB69 RegA Translational Repressor Proteins that Determine RNA-Binding Specificity
RegA protein of T4 and related bacteriophages is a highly conserved RNA-binding protein that represses the translation of many phage mRNAs that encode enzymes involved in DNA metabolism. RB69, a T4-related bacteriophage, has a unique regA gene, which we have cloned, sequenced, and expressed. The predicted amino acid sequence of RB69 RegA is 78% identical to that of T4 RegA. Plasmidencoded RB69 RegA expressed in vivo represses the translation of T4 early mRNAs, including those of rIIA, rIIB, 44, 45, rpbA, and regA. Nucleotide sequences were determined for several T4 and RB69 regA mutations, and their corresponding repressor properties were characterized. All of the 10 missense mutations affect residues conserved between RB69 and T4 RegA. Two regions of RegA are especially sensitive to mutation: one between Val-15 and Ala-25 and another between Arg-70 and Ser-73. Sequence alignments and mutational data suggest that the region from Val-15 to Ala-25 is similar to helix-turn-helix domains of DNA-binding proteins and confers RNA-binding specificity upon RegA. The RegA691 protein (IIe-24 → Thr) has an in vivo phenotype that appears to distinguish site-specific and cooperative binding modes of hierarchical RegA-mediated translational repression.
Digitoxin Mimics Gene Therapy with CFTR and Suppresses Hypersecretion of IL-8 from Cystic Fibrosis Lung Epithelial Cells
Cystic fibrosis (CF) is a fatal, autosomal, recessive genetic disease that is characterized by profound lung inflammation. The inflammatory process is believed to be caused by massive overproduction of the proinflammatory protein IL-8, and the high levels of IL-8 in the CF lung are therefore believed to be the central mechanism behind CF lung pathophysiology. We show here that digitoxin, at sub nM concentrations, can suppress hypersecretion of IL-8 from cultured CF lung epithelial cells. Certain other cardiac glycosides are also active but with much less potency. The specific mechanism of digitoxin action is to block phosphorylation of the inhibitor of NF-κB (IκBα). IκBα phosphorylation is a required step in the activation of the NF-κB signaling pathway and the subsequent expression of IL-8. Digitoxin also has effects on global gene expression in CF cells. Of the informative genes expressed by the CF epithelial cell line IB-3, 58 are significantly (P < 0.05) affected by gene therapy with wild-type (CFTR CF transmembrane conductance regulator). Of these 58 genes, 36 (62%) are similarly affected by digitoxin and related active analogues. We interpret this result to suggest that digitoxin can also partially mimic the genomic consequences of gene therapy with CF transmembrane conductance regulator. We therefore suggest that digitoxin, with its lengthy history of human use, deserves consideration as a candidate drug for suppressing IL-8-dependent lung inflammation in CF.
RSV-specific airway resident memory CD8+ T cells and differential disease severity after experimental human infection
In animal models, resident memory CD8+ T (Trm) cells assist in respiratory virus elimination but their importance in man has not been determined. Here, using experimental human respiratory syncytial virus (RSV) infection, we investigate systemic and local virus-specific CD8+ T-cell responses in adult volunteers. Having defined the immunodominance hierarchy, we analyse phenotype and function longitudinally in blood and by serial bronchoscopy. Despite rapid clinical recovery, we note surprisingly extensive lower airway inflammation with persistent viral antigen and cellular infiltrates. Pulmonary virus-specific CD8+ T cells display a CD69+CD103+ Trm phenotype and accumulate to strikingly high frequencies into convalescence without continued proliferation. While these have a more highly differentiated phenotype, they express fewer cytotoxicity markers than in blood. Nevertheless, their abundance before infection correlates with reduced symptoms and viral load, implying that CD8+ Trm cells in the human lung can confer protection against severe respiratory viral disease when humoral immunity is overcome. Respiratory syncytial virus (RSV) is a common cause of respiratory tract infections. Here the authors analyse cellular immune responses of individuals experimentally infected with RSV and reveal the presence of high frequencies of virus- specific resident memory CD8 + T cells in the airway, which correlate with improved viral control.
Epitope-specific airway-resident CD4+ T cell dynamics during experimental human RSV infection
BACKGROUNDRespiratory syncytial virus (RSV) is an important cause of acute pulmonary disease and one of the last remaining major infections of childhood for which there is no vaccine. CD4+ T cells play a key role in antiviral immunity, but they have been little studied in the human lung.METHODSHealthy adult volunteers were inoculated i.n. with RSV A Memphis 37. CD4+ T cells in blood and the lower airway were analyzed by flow cytometry and immunohistochemistry. Bronchial soluble mediators were measured using quantitative PCR and MesoScale Discovery. Epitope mapping was performed by IFN-γ ELISpot screening, confirmed by in vitro MHC binding.RESULTSActivated CD4+ T cell frequencies in bronchoalveolar lavage correlated strongly with local C-X-C motif chemokine 10 levels. Thirty-nine epitopes were identified, predominantly toward the 3' end of the viral genome. Five novel MHC II tetramers were made using an immunodominant EFYQSTCSAVSKGYL (F-EFY) epitope restricted to HLA-DR4, -DR9, and -DR11 (combined allelic frequency: 15% in Europeans) and G-DDF restricted to HLA-DPA1*01:03/DPB1*02:01 and -DPA1*01:03/DPB1*04:01 (allelic frequency: 55%). Tetramer labeling revealed enrichment of resident memory CD4+ T (Trm) cells in the lower airway; these Trm cells displayed progressive differentiation, downregulation of costimulatory molecules, and elevated CXCR3 expression as infection evolved.CONCLUSIONSHuman infection challenge provides a unique opportunity to study the breadth of specificity and dynamics of RSV-specific T-cell responses in the target organ, allowing the precise investigation of Trm recognizing novel viral antigens over time. The new tools that we describe enable precise tracking of RSV-specific CD4+ cells, potentially accelerating the development of effective vaccines.TRIAL REGISTRATIONClinicalTrials.gov NCT02755948.FUNDINGMedical Research Council, Wellcome Trust, National Institute for Health Research.
Nutrients composition in fit snacks made from ostrich, beef and chicken dried meat
The aim of the study was to compare three types of meat snacks made from ostrich, beef, and chicken meat in relation to their nutrients content including fat, fatty acids, heme iron, and peptides, like anserine and carnosine, from which human health may potentially benefit. Dry meat samples were produced, from one type of muscle, obtained from ostrich (m. ambiens), beef (m. semimembranosus), and broiler chicken meat (m. pectoralis major). The composition of dried ostrich, beef, and chicken meat, with and without spices was compared. We show that meat snacks made from ostrich, beef, and chicken meat were characterized by high concentration of nutrients including proteins, minerals (heme iron especially in ostrich, than in beef), biologically active peptides (carnosine—in beef, anserine—in ostrich then in chicken meat). The, beneficial to human health, n-3 fatty acids levels differed significantly between species. Moreover, ostrich jerky contained four times less fat as compared to beef and half of that in chicken. In conclusion we can say that dried ostrich, beef, and chicken meat could be a good source of nutritional components.
Erratum: RSV-specific airway resident memory CD8+ T cells and differential disease severity after experimental human infection
Nature Communications 6: Article number: 10224 (2015); Published: 21 December 2015; Updated: 9 March 2016 In Fig. 5 of this article, the three dot plots in the first row of panel a contain black numerical labels that are incorrect, and light blue labels that are correct. A revised version of Fig. 5,with correct labels in black throughout, appears below.
Maternal and fetal blood ammonia concentrations in normal term human pregnancies
The current evidence on the primary source of ammonia production in the human fetoplacental unit is potentially misleading. The aim of the present investigation was to determine the concentration of ammonia in human maternal and fetal blood at birth and to compare them with published data in late gestation sheep. In 12 normal human pregnancies, umbilical arterial and venous and maternal venous blood was sampled, and whole blood ammonia concentrations were measured. Data from 12 pregnant sheep and fetuses from our previous studies were utilized for comparison. The human fetus at delivery has higher concentrations of ammonia (60-80 microM) than the late gestation fetal lamb (25-35 microM). In the human, the arterial umbilical ammonia concentration exceeds the venous umbilical concentration, indicating a net ammonia production by fetal tissues. In sheep, the venous umbilical ammonia concentration exceeds the arterial umbilical concentration, indicating the net placental ammonia production. In contrast to fetal lambs, human fetuses exhibit a net production of ammonia, which may reflect differences in biologic state or a species difference.