Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
11
result(s) for
"Ju, Kou-San"
Sort by:
Fosmidomycin biosynthesis diverges from related phosphonate natural products
2019
Fosmidomycin and related molecules comprise a family of phosphonate natural products with potent antibacterial, antimalarial and herbicidal activities. To understand the biosynthesis of these compounds, we characterized the fosmidomycin producer,
Streptomyces lavendulae
, using biochemical and genetic approaches. We were unable to elicit production of fosmidomycin, instead observing the unsaturated derivative dehydrofosmidomycin, which we showed potently inhibits 1-deoxy-
d
-xylulose-5-phosphate reductoisomerase and has bioactivity against a number of bacteria. The genes required for dehydrofosmidomycin biosynthesis were established by heterologous expression experiments. Bioinformatics analyses, characterization of intermediates and in vitro biochemistry show that the biosynthetic pathway involves conversion of a two-carbon phosphonate precursor into the unsaturated three-carbon product via a highly unusual rearrangement reaction, catalyzed by the 2-oxoglutarate dependent dioxygenase DfmD. The required genes and biosynthetic pathway for dehydrofosmidomycin differ substantially from that of the related natural product FR-900098, suggesting that the ability to produce these bioactive molecules arose via convergent evolution.
The biosynthetic pathway for the phosphonate natural product dehydrofosmidomycin differs from that of the related compound FR-900098, involving rearrangement of a two-carbon phosphonate precursor catalyzed by a 2-oxoglutarate-dependent dioxygenase.
Journal Article
Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes
by
Wang, Kwo-Kwang A.
,
Li, Steven
,
van der Donk, Wilfred A.
in
Actinobacteria
,
Actinobacteria - chemistry
,
Actinobacteria - genetics
2015
Although natural products have been a particularly rich source of human medicines, activity-based screening results in a very high rate of rediscovery of known molecules. Based on the large number of natural product biosynthetic genes in microbial genomes, many have proposed “genome mining” as an alternative approach for discovery efforts; however, this idea has yet to be performed experimentally on a large scale. Here, we demonstrate the feasibility of large-scale, high-throughput genome mining by screening a collection of over 10,000 actinomycetes for the genetic potential to make phosphonic acids, a class of natural products with diverse and useful bioactivities. Genome sequencing identified a diverse collection of phosphonate biosynthetic gene clusters within 278 strains. These clusters were classified into 64 distinct groups, of which 55 are likely to direct the synthesis of unknown compounds. Characterization of strains within five of these groups resulted in the discovery of a new archetypical pathway for phosphonate biosynthesis, the first (to our knowledge) dedicated pathway for H-phosphinates, and 11 previously undescribed phosphonic acid natural products. Among these compounds are argolaphos, a broad-spectrum antibacterial phosphonopeptide composed of aminomethylphosphonate in peptide linkage to a rare amino acid N5-hydroxyarginine; valinophos, an N-acetyl L-Val ester of 2,3-dihydroxypropylphosphonate; and phosphonocystoximate, an unusual thiohydroximate-containing molecule representing a new chemotype of sulfur-containing phosphonate natural products. Analysis of the genome sequences from the remaining strains suggests that the majority of the phosphonate biosynthetic repertoire of Actinobacteria has been captured at the gene level. This dereplicated strain collection now provides a reservoir of numerous, as yet undiscovered, phosphonate natural products.
Journal Article
Structural basis for methylphosphonate biosynthesis
by
van der Donk, Wilfred A.
,
Ulrich, Emily C.
,
Ju, Kou-San
in
Alphaproteobacteria - enzymology
,
Aquatic Organisms - enzymology
,
Bacterial Proteins - chemistry
2017
Methylphosphonate synthase (MPnS) produces methylphosphonate, a metabolic precursor to methane in the upper ocean. Here, we determine a 2.35-angstrom resolution structure of MPnS and discover that it has an unusual 2-histidine-1-glutamine iron-coordinating triad. We further solve the structure of a related enzyme, hydroxyethylphosphonate dioxygenase from Streptomyces albus (SaHEPD), and find that it displays the same motif. SaHEPD can be converted into an MPnS by mutation of glutamine-adjacent residues, identifying the molecular requirements for methylphosphonate synthesis. Using these sequence markers, we find numerous putative MPnSs in marine microbiomes and confirm that MPnS is present in the abundant Pelagibacter ubique. The ubiquity of MPnS-containing microbes supports the proposal that methylphosphonate is a source of methane in the upper, aerobic ocean, where phosphorus-starved microbes catabolize methylphosphonate for its phosphorus.
Journal Article
Ent-homocyclopiamine B, a Prenylated Indole Alkaloid of Biogenetic Interest from the Endophytic Fungus Penicillium concentricum
by
Ali, Tehane
,
Ju, Kou-San
,
Pham, Tiffany M.
in
antimicrobial
,
Antimicrobial agents
,
Biosynthesis
2019
Ent-homocyclopiamine B (1), a new prenylated indole alkaloid bearing an alicyclic nitro group along with 2-methylbutane-1,2,4-triol (2) were isolated from an endophytic fungus Penicillium concentricum of the liverwort Trichocolea tomentella (Trichocoleaceae). The structure of 1 was elucidated through extensive spectroscopic analyses and comparison with data reported for a structurally related nitro-bearing Penicillium metabolite, clopiamine C (3), which contain an indolizidine ring instead of the quinolizine ring in 1. The new compound, ent-homocyclopiamine B, exhibited slight growth inhibition against Gram-positive bacteria. Based on the reported biosynthesis of related compounds and the isolation of the mevalonic acid derived compound 2-methyl-1,2,4-butanetriol (2), we proposed that ent-homocylopiamine B (1) was biosynthesized from lysine and prenyl group-producing mevalonic pathway.
Journal Article
Phylogenetic relationships in the family Streptomycetaceae using multi-locus sequence analysis
by
Labeda, David P.
,
Rong, Xiaoying
,
Doroghazi, James R.
in
Bacteria
,
Base Sequence
,
Biomedical and Life Sciences
2017
The family
Streptomycetaceae
, notably species in the genus
Streptomyces
, have long been the subject of investigation due to their well-known ability to produce secondary metabolites. The emergence of drug resistant pathogens and the relative ease of producing genome sequences has renewed the importance of
Streptomyces
as producers of new natural products and resulted in revived efforts in isolating and describing strains from novel environments. A previous large study of the phylogeny in the
Streptomycetaceae
based on 16S rRNA gene sequences provided a useful framework for the relationships among species, but did not always have sufficient resolution to provide definitive identification. Multi-locus sequence analysis of 5 house-keeping genes has been shown to provide improved taxonomic resolution of
Streptomyces
species in a number of previous reports so a comprehensive study was undertaken to evaluate evolutionary relationships among species within the family
Streptomycetaceae
where type strains are available in the ARS Culture Collection or genome sequences are available in GenBank. The results of the analysis supported the distinctiveness of
Kitasatospora
and
Streptacidiphilus
as validly named genera since they cluster outside of the phylogenetic radiation of the genus
Streptomyces
. There is also support for the transfer of a number of
Streptomyces
species to the genus
Kitasatospora
as well for reducing at least 31 species clusters to a single taxon. The multi-locus sequence database resulting from the study is a useful tool for identification of new isolates and the phylogenetic analysis presented also provides a road map for planning future genome sequencing efforts in the
Streptomycetaceae
.
Journal Article
Application of nitroarene dioxygenases in the design of novel strains that degrade chloronitrobenzenes
by
Parales, Rebecca E.
,
Ju, Kou-San
in
Bacterial Proteins - chemistry
,
Bacterial Proteins - genetics
,
Bacterial Proteins - metabolism
2009
Summary Widespread application of chloronitrobenzenes as feedstocks for the production of industrial chemicals and pharmaceuticals has resulted in extensive environmental contamination with these toxic compounds, where they pose significant risks to the health of humans and wildlife. While biotreatment in general is an attractive solution for remediation, its effectiveness is limited with chloronitrobenzenes due to the small number of strains that can effectively mineralize these compounds and their ability to degrade only select isomers. To address this need, we created engineered strains with a novel degradation pathway that reduces the total number of steps required to convert chloronitrobenzenes into compounds of central metabolism. We examined the ability of 2‐nitrotoluene 2,3‐dioxygenase from Acidovorax sp. strain JS42, nitrobenzene 1,2‐dioxygenase (NBDO) from Comamonas sp. strain JS765, as well as active‐site mutants of NBDO to generate chlorocatechols from chloronitrobenzenes, and identified the most efficient enzymes. Introduction of the wild‐type NBDO and the F293Q variant into Ralstonia sp. strain JS705, a strain carrying the modified ortho pathway for chlorocatechol metabolism, resulted in bacterial strains that were able to sustainably grow on all three chloronitrobenzene isomers without addition of co‐substrates or co‐inducers. These first‐generation engineered strains demonstrate the utility of nitroarene dioxygenases in expanding the metabolic capabilities of bacteria and provide new options for improved biotreatment of chloronitrobenzene‐contaminated sites.
Journal Article
Genomics-enabled discovery of phosphonate natural products and their biosynthetic pathways
2014
Phosphonate natural products have proven to be a rich source of useful pharmaceutical, agricultural, and biotechnology products, whereas study of their biosynthetic pathways has revealed numerous intriguing enzymes that catalyze unprecedented biochemistry. Here we review the history of phosphonate natural product discovery, highlighting technological advances that have played a key role in the recent advances in their discovery. Central to these developments has been the application of genomics, which allowed discovery and development of a global phosphonate metabolic framework to guide research efforts. This framework suggests that the future of phosphonate natural products remains bright, with many new compounds and pathways yet to be discovered.
Journal Article
roadmap for natural product discovery based on large-scale genomics and metabolomics
2014
Actinobacteria encode a wealth of natural product biosynthetic gene clusters, whose systematic study is complicated by numerous repetitive motifs. By combining several metrics, we developed a method for the global classification of these gene clusters into families (GCFs) and analyzed the biosynthetic capacity of Actinobacteria in 830 genome sequences, including 344 obtained for this project. The GCF network, comprising 11,422 gene clusters grouped into 4,122 GCFs, was validated in hundreds of strains by correlating confident mass spectrometric detection of known small molecules with the presence or absence of their established biosynthetic gene clusters. The method also linked previously unassigned GCFs to known natural products, an approach that will enable de novo, bioassay-free discovery of new natural products using large data sets. Extrapolation from the 830-genome data set reveals that Actinobacteria encode hundreds of thousands of future drug leads, and the strong correlation between phylogeny and GCFs frames a roadmap to efficiently access them.
Journal Article
microbeMASST: a taxonomically informed mass spectrometry search tool for microbial metabolomics data
2024
microbeMASST, a taxonomically informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbe-derived metabolites and relative producers without a priori knowledge will vastly enhance the understanding of microorganisms’ role in ecology and human health.
microbeMASST is a tool to associate known and unknown metabolites to microbial producers leveraging untargeted metabolomics data.
Journal Article