Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
23
result(s) for
"Jung, Chaeyong"
Sort by:
Growth Modulatory Role of Zinc in Prostate Cancer and Application to Cancer Therapeutics
2020
Zinc is a group IIB heavy metal. It is an important regulator of major cell signaling pathways in most mammalian cells, functions as an antioxidant and plays a role in maintaining genomic stability. Zinc deficiency leads to severe diseases in the brain, pancreas, liver, kidneys and reproductive organs. Zinc loss occurs during tumor development in a variety of cancers. The prostate normally contains abundant intracellular zinc and zinc loss is a hallmark of the development of prostate cancer development. The underlying mechanism of this loss is not clearly understood. The knowledge that excess zinc prevents the growth of prostate cancers suggests that zinc-mediated therapeutics could be an effective approach for cancer prevention and treatment, although challenges remain. This review summarizes the specific roles of zinc in several cancer types focusing on prostate cancer. The relationship between prostate cancer and the dysregulation of zinc homeostasis is examined in detail in an effort to understand the role of zinc in prostate cancer.
Journal Article
Temozolomide promotes matrix metalloproteinase 9 expression through p38 MAPK and JNK pathways in glioblastoma cells
2024
Glioblastoma (GBM) is a highly aggressive and deadly brain cancer. Temozolomide (TMZ) is the standard chemotherapeutic agent for GBM, but the majority of patients experience recurrence and invasion of tumor cells. We investigated whether TMZ treatment of GBM cells regulates matrix metalloproteinases (MMPs), which have the main function to promote tumor cell invasion. TMZ effectively killed GL261, U343, and U87MG cells at a concentration of 500 µM, and surviving cells upregulated MMP9 expression and its activity but not those of MMP2. TMZ also elevated levels of
MMP9
mRNA and
MMP9
promoter activity. Subcutaneous graft tumors survived from TMZ treatment also exhibited increased expression of MMP9 and enhanced gelatinolytic activity. TMZ-mediated MMP9 upregulation was specifically mediated through the phosphorylation of p38 and JNK. This then stimulates AP-1 activity through the upregulation of c-Fos and c-Jun. Inhibition of the p38, JNK, or both pathways counteracted the TMZ-induced upregulation of MMP9 and AP-1. This study proposes a potential adverse effect of TMZ treatment for GBM: upregulation of MMP9 expression potentially associated with increased invasion and poor prognosis. This study also provides valuable insights into the molecular mechanisms by which TMZ treatment leads to increased MMP9 expression in GBM cells.
Journal Article
CD46 protects the bladder cancer cells from cetuximab-mediated cytotoxicity
by
Thanh, Hien Duong
,
Jung, Chaeyong
,
Kim, Min Soo
in
631/67/1059/602
,
631/67/589/1336
,
AKT protein
2022
Epidermal growth factor receptor (EGFR) is an effective target for those patients with metastatic colorectal cancers that retain the wild-type
RAS
gene. However, its efficacy in many cancers, including bladder cancer, is unclear. Here, we studied the in vitro effects of cetuximab monoclonal antibodies (mAbs) targeting EGFR on the bladder cancer cells and role of CD46. Cetuximab was found to inhibit the growth of both colon and bladder cancer cell lines. Furthermore, cetuximab treatment inhibited AKT and ERK phosphorylation in the bladder cancer cells and reduced the expression of CD46 membrane-bound proteins. Restoration of CD46 expression protected the bladder cancer cells from cetuximab-mediated inhibition of AKT and ERK phosphorylation. We hypothesized that CD46 provides protection to the bladder cancer cells against mAb therapies. Bladder cancer cells were also susceptible to cetuximab-mediated immunologic anti-tumor effects. Further, cetuximab enhanced the cell killing by activating both antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) in bladder cancer cells. Restoration of CD46 expression protected the cells from both CDC and ADCC induced by cetuximab. Together, CD46 exhibited a cancer-protective effect against both direct (by involvement of PBMC or complement) and indirect cytotoxic activity by cetuximab in bladder cancer cells. Considering its clinical importance, CD46 could be an important link in the action mechanism of ADCC and CDC intercommunication and may be used for the development of novel therapeutic strategies.
Journal Article
Fibroblast growth factor receptor 4 increases epidermal growth factor receptor (EGFR) signaling by inducing amphiregulin expression and attenuates response to EGFR inhibitors in colon cancer
by
Kim, Dae‐Hwan
,
Bae, Woo‐Kyun
,
Cho, Sang‐Hee
in
1-Phosphatidylinositol 3-kinase
,
AKT protein
,
Amphiregulin
2020
Fibroblast growth factor receptor 4 (FGFR4) is known to induce cancer cell proliferation, invasion, and antiapoptosis through activation of RAS/RAF/ERK and PI3K/AKT pathways, which are also known as major molecular bases of colon cancer carcinogenesis related with epidermal growth factor receptor (EGFR) signaling. However, the interaction between FGFR4 and EGFR signaling in regard to colon cancer progression is unclear. Here, we investigated a potential cross‐talk between FGFR4 and EGFR, and the effect of anti‐EGFR therapy in colon cancer treatment. To explore the biological roles of FGFR4 in cancer progression, RNA sequencing was carried out using FGFR4 transfected colon cell lines. Gene ontology data showed the upregulation of genes related to EGFR signaling, and we identified that FGFR4 overexpression secretes EGFR ligands such as amphiregulin (AREG) with consequent activation of EGFR and ErbB3. This result was also shown in in vivo study and the cooperative interaction between EGFR and FGFR4 promoted tumor growth. In addition, FGFR4 overexpression reduced cetuximab‐induced cytotoxicity and the combination of FGFR4 inhibitor (BLU9931) and cetuximab showed profound antitumor effect compared to cetuximab alone. Clinically, we found the positive correlation between FGFR4 and AREG expression in tumor tissue, but not in normal tissue, from colon cancer patients and these expressions were significantly correlated with poor overall survival in patients treated with cetuximab. Therefore, our results provide the novel mechanism of FGFR4 in connection with EGFR activation and the combination of FGFR4 inhibitor and cetuximab could be a promising therapeutic option to achieve the optimal response to anti‐EGFR therapy in colon cancer. Our study has characterized the cross‐talk between fibroblast growth factor receptor 4 (FGFR4) and epidermal growth factor receptor (EGFR)/ErbB3 signaling by the contribution of EGFR ligands secreted from FGFR4. These findings provide experimental evidence for combined treatment with FGFR4 inhibitor and anti‐EGFR therapy in colon cancer.
Journal Article
Differential CARM1 expression in prostate and colorectal cancers
by
Kwon, Dong Deuk
,
Nguyen, Nguyen Thi Xuan
,
Lee, Byung Kook
in
Androgens - metabolism
,
Animals
,
Biomarkers, Tumor - genetics
2010
Background
Coactivator-associated arginine methyltransferase 1 (CARM1) functions as a transcriptional coactivator of androgen receptor (AR)-mediated signaling. Correspondingly, overexpression of CARM1 has been associated with the development of prostate cancer (PCa) and its progression to androgen-independent PCa. In our preliminary study, however, the promoting effects of CARM1, with regard to androgen-stimulated AR target gene expression were minimal. These results suggested that the AR target gene expression associated with CARM1 may result primarily from non-hormone dependent activity. The goal of this study was to confirm the pattern of expression of CARM1 in human tumors and determine the mechanism of action in CARM1 overexpressed tumors.
Methods
Tissue microarray was used to determine the pattern of expression of CARM1 in human cancers by immunohistochemistry. CARM1 expression was also evaluated in prostate and colorectal surgical specimens and the clinical records of all cases were reviewed. In addition, a reporter transcription assay using the prostate-specific antigen (PSA) promoter was used to identify the signaling pathways involved in non-hormone-mediated signal activation associated with CARM1.
Results
The tissue microarray showed that CARM1 was particularly overexpressed in the colorectal cancers while CARM1 expression was not prevalent in the prostate and breast cancers. Further studies using surgical specimens demonstrated that CARM1 was highly overexpressed in 75% of colorectal cancers (49 out of 65) but not in the androgen-independent PCa. In addition, CARM1's coactivating effect on the entire PSA promoter was very limited in both androgen-dependent and androgen-independent PCa cells. These results suggest that there are other factors associated with CARM1 expression in PSA regulation. Indeed, CARM1 significantly regulated both p53 and NF-κB target gene transcription.
Conclusions
The results of this study suggest that, in addition to its role in activation of steroid receptors, CARM1 functions as a transcriptional modulator by altering the activity of many transcriptional factors, especially with regard to androgen independent PCa and colorectal cancers.
Journal Article
FGFR4 promotes CAF activation through the CXCL10-CXCR3 axis in colon cancer
2025
Cancer-associated fibroblasts (CAFs) promote the malignant phenotype of cancer through crosstalk with tumor and immune cells within the tumor microenvironment. Therefore, the mechanisms underlying CAF activation require in-depth study to develop strategies targeting CAFs during cancer immunotherapy. In this study, we investigated the role of FGFR4 in CAF regulation in colon cancer. FGFR4-overexpressing cancer cells promoted CAF abundance and activation in vivo, while also inducing the differentiation of normal fibroblasts into CAFs via their secretome. Mechanistically, FGFR4 induced CXC-chemokine ligand (CXCL) 10 production by upregulating Toll-like receptor 3-interferon regulatory factor-interferon beta (IFNβ) signaling and the autocrine action of IFNβ. CXCL10 increased CAF marker expression in fibroblasts, including alpha-smooth muscle actin and vimentin. CXCL10 also promoted CAF migration, invasion, and contractibility, which reflects CAF activation. In contrast, knocking down CXCL10 or neutralizing antibodies abolished CAF marker expression in fibroblasts. Inhibition of CXC receptor type (CXCR) 3, the cognate receptor of CXCL10, also impaired CAF function. In human colon cancer samples,
FGFR4
and
CXCL10
expression was positively correlated with CAF marker expression. Finally, dual inhibition of FGFR4 and CXCR3 suppressed tumor growth, accompanied by CAF downregulation. Our findings reveal the mechanism through which FGFR4 promotes CAF differentiation/activation in TME via the CXCL10-CXCR3 axis, highlighting the potential of co-targeting FGFR4 and CXCR3 as a therapeutic strategy for patients with stromal-dominant tumors.
Journal Article
Identifying candidate genes associated with hippocampal dysfunction in a hemiparkinsonian rat model by transcriptomic profiling
2024
Parkinson's disease (PD) often results in hippocampal dysfunction, which leads to cognitive and emotional challenges and synaptic irregularities. This study attempted to assess behavioral anomalies and identify differentially expressed genes (DEGs) within the hippocampus of a hemiparkinsonian rat model to potentially uncover novel genetic candidates linked to hippocampal dysfunction. Striatal 6-hydroxydopamine (6-OHDA) infusions were performed unilaterally in the brains of adult SD rats, while dopaminergic impairments were verified in rats with 6-OHDA-lesioned striata. RNA sequencing and gene expression analysis unveiled 1018 DEGs in the ipsilateral rat hippocampus following 6-OHDA infusion: 631 genes exhibited upregulation, while 387 genes were downregulated (with FDR-adjusted p-value < 0.05 and absolute fold-change > 1.5). Gene ontology analysis of DEGs indicated that alterations in the hippocampi of 6-OHDA-lesioned rats were primarily associated with synaptic signaling, axon development, behavior, postsynaptic membrane, synaptic membrane, neurotransmitter receptor activity, and peptide receptor activity. The Kyoto Encyclopedia of Genes and Genomes analysis of DEGs demonstrated significant enrichment of the neuroactive ligand-receptor interaction, calcium signaling pathway, cAMP signaling pathway, axon guidance, and notch signaling pathway in rat hippocampi that had been subjected to striatal 6-OHDA infusion. STRING analysis confirmed a notable upregulation of eight hub genes (Notch3, Gng4, Itga3, Grin2d, Hgf, Fgf11, Htr3a, and Col6a2), along with a significant downregulation of two hub genes (Itga11 and Plp1), as validated by reverse transcription-quantitative polymerase chain reaction. This study provides a comprehensive transcriptomic profile of the hippocampi in a hemiparkinsonian rat model, thereby offering insights into the signaling pathways underlying hippocampal dysfunction.
Journal Article
HOXB13 promotes androgen independent growth of LNCaP prostate cancer cells by the activation of E2F signaling
2010
Background
Androgen signaling plays a critical role in the development of prostate cancer and its progression. However, androgen-independent prostate cancer cells emerge after hormone ablation therapy, resulting in significant clinical problems. We have previously demonstrated that the HOXB13 homeodomain protein functions as a prostate cancer cell growth suppressor by inhibiting androgen-mediated signals. However, the role of the HOXB13 in androgen-independent growth of prostate cancer cells remains unexplained.
Results
In this report, we first demonstrated that HOXB13 was highly overexpressed in hormone-refractory tumors compared to tumors without prostate-specific antigen after initial treatment. Functionally, in an androgen-free environment minimal induction of HOXB13 in LNCaP prostate cancer cells, to the level of the normal prostate, markedly promoted cell proliferation while suppression inhibited cell proliferation. The HOXB13-mediated cell growth promotion in the absence of androgen, appears to be mainly accomplished through the activation of RB-E2F signaling by inhibiting the expression of the p21
waf
tumor suppressor. Indeed, forced expression of HOXB13 dramatically decreased expression of p21
waf
; this inhibition largely affected HOXB13-mediated promotion of E2F signaling.
Conclusions
Taken together, the results of this study demonstrated the presence of a novel pathway that helps understand androgen-independent survival of prostate cancer cells. These findings suggest that upregulation of HOXB13 is associated with an additive growth advantage of prostate cancer cells in the absence of or low androgen concentrations, by the regulation of p21-mediated E2F signaling.
Journal Article
Complement regulatory protein CD46 promotes bladder cancer metastasis through activation of MMP9
2024
CD46, a transmembrane protein known for protecting cells from complement-mediated damage, is frequently dysregulated in various types of cancer. Its overexpression in bladder cancers safeguards the cancer cells against both complement and antibody-mediated cytotoxicity. The present study explored a new role of CD46 in facilitating cancer cell invasion and metastasis, examining its regulatory effect on matrix metalloproteases (MMPs) and their effect on the metastatic capability of bladder cancer cells. Specifically, CD46 alteration positively influenced MMP9 expression, but not MMP2, in several bladder cancer cell lines. Furthermore, CD46 overexpression triggered phosphorylation of p38 MAPK and protein kinase B (AKT), leading to enhanced activator protein 1 (AP-1) activity via c-Jun upregulation. The inhibition of p38 or AKT pathways attenuated the CD46-induced MMP9 and AP-1 upregulation, indicating that the promotion of MMP9 by CD46 involved activating both p38 MAPK and AKT. Functionally, the upregulation of MMP9 by CD46 translated to increased migratory and invasive capabilities of bladder cancer cells, as well as enhanced in vivo metastasis. Overall, the present study revealed a novel role for CD46 as a metastasis promoter through MMP9 activation in bladder cancers and highlighted the regulatory mechanism of CD46-mediated MMP9 promotion via p38 MAPK and AKT activation.
Journal Article
Novel Prostate-Specific Promoter Derived from PSA and PSMA Enhancers
2002
The expression of prostate-specific membrane antigen (PSMA) and prostate-specific antigen (PSA), two well characterized marker proteins, remains highly active in the hormone refractory stage of prostate cancer. In this study, an artificial chimeric enhancer (PSES) composed of two modified regulatory elements controlling the expression of PSA and PSMA genes was tested for its promoter activity and tissue specificity using the reporter system. As a result, this novel PSES promoter remained silent in PSA- and PSMA-negative prostate and non-prostate cancer cell lines, but mediated high levels of luciferase in PSA- and PSMA-expressing prostate cancer cell lines in the presence and absence of androgen. To determine whether PSES could be used for in vivo gene therapy of prostate cancer, a recombinant adenovirus, Ad-PSES-luc, was constructed. Luciferase activity in prostate cancer cell lines mediated by Ad-PSES-luc was 400- to 1000-fold higher than in several other non-prostate cell lines, suggesting the high tissue-specificity of the PSES promoter in an adenoviral vector. Finally, recombinant virus Ad-PSES-luc was injected into mice to evaluate the tissue-discriminatory promoter activity in an experimental animal. Unlike Ad-CMV-luc, the luciferase activity from systemic injection of Ad-PSES-luc was fairly low in all major organs. However, when injected into prostate, Ad-PSES-luc drove high luciferase activity almost exclusively in prostate and not in other tissues. Our results demonstrated the potential use of PSES for the treatment of androgen-independent prostate cancer patients.
Journal Article