Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
8 result(s) for "Jurgas, Artur"
Sort by:
Improving the classification of veterinary thoracic radiographs through inter-species and inter-pathology self-supervised pre-training of deep learning models
The analysis of veterinary radiographic imaging data is an essential step in the diagnosis of many thoracic lesions. Given the limited time that physicians can devote to a single patient, it would be valuable to implement an automated system to help clinicians make faster but still accurate diagnoses. Currently, most of such systems are based on supervised deep learning approaches. However, the problem with these solutions is that they need a large database of labeled data. Access to such data is often limited, as it requires a great investment of both time and money. Therefore, in this work we present a solution that allows higher classification scores to be obtained using knowledge transfer from inter-species and inter-pathology self-supervised learning methods. Before training the network for classification, pretraining of the model was performed using self-supervised learning approaches on publicly available unlabeled radiographic data of human and dog images, which allowed substantially increasing the number of images for this phase. The self-supervised learning approaches included the Beta Variational Autoencoder, the Soft-Introspective Variational Autoencoder, and a Simple Framework for Contrastive Learning of Visual Representations. After the initial pretraining, fine-tuning was performed for the collected veterinary dataset using 20% of the available data. Next, a latent space exploration was performed for each model after which the encoding part of the model was fine-tuned again, this time in a supervised manner for classification. Simple Framework for Contrastive Learning of Visual Representations proved to be the most beneficial pretraining method. Therefore, it was for this method that experiments with various fine-tuning methods were carried out. We achieved a mean ROC AUC score of 0.77 and 0.66, respectively, for the laterolateral and dorsoventral projection datasets. The results show significant improvement compared to using the model without any pretraining approach.
Improving quality control of whole slide images by explicit artifact augmentation
The problem of artifacts in whole slide image acquisition, prevalent in both clinical workflows and research-oriented settings, necessitates human intervention and re-scanning. Overcoming this challenge requires developing quality control algorithms, that are hindered by the limited availability of relevant annotated data in histopathology. The manual annotation of ground-truth for artifact detection methods is expensive and time-consuming. This work addresses the issue by proposing a method dedicated to augmenting whole slide images with artifacts. The tool seamlessly generates and blends artifacts from an external library to a given histopathology dataset. The augmented datasets are then utilized to train artifact classification methods. The evaluation shows their usefulness in classification of the artifacts, where they show an improvement from 0.10 to 0.01 AUROC depending on the artifact type. The framework, model, weights, and ground-truth annotations are freely released to facilitate open science and reproducible research.
Automated segmentation of canine pulmonary masses in CT imaging using AI
Primary pulmonary lung cancer is rare in dogs, and clinicians increasingly rely on advanced imaging for diagnosis and treatment planning. However, manual lesion segmentation can be time-consuming and subject to operator variability. This retrospective study compiled a multicenter dataset of canine CT scans containing at least one pulmonary mass measuring more than 2 cm. Data were collected from two university veterinary hospitals and a teleradiology service, encompassing varying acquisition protocols and scanner types. Lesions were manually segmented to create ground truth masks, and an AI model was trained and evaluated using the nnUNet v2 framework with a 5-fold cross-validation approach. Performance on a separate test set of 30 scans was quantified using the Dice Similarity Coefficient (DSC) and Average Symmetric Surface Distance (ASSD). The databse was made of 217 cases. The training/validation set comprised 187 cases. The model's segmentation accuracy was tested on 30 cases. The trained model had a high segmentation accuracy on the test set, with a mean DSC of 0.91 and an ASSD of 1.88 mm. The model had high performance on homogeneous, well-defined masses, whereas the presence of intralesional mineralisation or pleural effusion had a negative impact on the model's performance.
Automated AI-based segmentation of canine hepatic focal lesions from CT studies
Hepatic masses are a common occurrence in veterinary medicine, with treatment options largely dependent on the nature and location of the mass. The gold standard treatment involves surgical removal of the mass, often followed by chemotherapy if necessary. However, in cases where mass removal is not feasible, chemotherapy becomes the primary treatment option. Accurate lesion segmentation is crucial in such scenarios to ensure precise treatment planning. This study aimed to develop and evaluate a deep learning-based algorithm for the automatic segmentation of hepatic masses in dogs. To achieve this, 200 canine CT cases with hepatic masses were collected from two clinics and the Antech Imaging Solutions database. Experienced veterinarians manually segmented the lesions to provide ground truth data. 25/200 CTs were excluded because they did not met the inclusion criteria. Finally, the algorithm was built using the nnUNet v2 framework and trained on 130 cases with a 5-fold training scheme. It was subsequently tested on 45 cases. The algorithm demonstrated high accuracy, achieving an average Dice score of 0.86 and an Average Symmetric Surface Distance (ASSD) of 2.70 mm. This represents the first report of a deep learning-based algorithm for the automatic segmentation of hepatic masses in dogs using CT imaging, highlighting its potential utility in clinical practice for improved treatment planning.
Unsupervised Method for Intra-patient Registration of Brain Magnetic Resonance Images based on Objective Function Weighting by Inverse Consistency: Contribution to the BraTS-Reg Challenge
Registration of brain scans with pathologies is difficult, yet important research area. The importance of this task motivated researchers to organize the BraTS-Reg challenge, jointly with IEEE ISBI 2022 and MICCAI 2022 conferences. The organizers introduced the task of aligning pre-operative to follow-up magnetic resonance images of glioma. The main difficulties are connected with the missing data leading to large, nonrigid, and noninvertible deformations. In this work, we describe our contributions to both the editions of the BraTS-Reg challenge. The proposed method is based on combined deep learning and instance optimization approaches. First, the instance optimization enriches the state-of-the-art LapIRN method to improve the generalizability and fine-details preservation. Second, an additional objective function weighting is introduced, based on the inverse consistency. The proposed method is fully unsupervised and exhibits high registration quality and robustness. The quantitative results on the external validation set are: (i) IEEE ISBI 2022 edition: 1.85, and 0.86, (ii) MICCAI 2022 edition: 1.71, and 0.86, in terms of the mean of median absolute error and robustness respectively. The method scored the 1st place during the IEEE ISBI 2022 version of the challenge and the 3rd place during the MICCAI 2022. Future work could transfer the inverse consistency-based weighting directly into the deep network training.
Improving Quality Control of Whole Slide Images by Explicit Artifact Augmentation
The problem of artifacts in whole slide image acquisition, prevalent in both clinical workflows and research-oriented settings, necessitates human intervention and re-scanning. Overcoming this challenge requires developing quality control algorithms, that are hindered by the limited availability of relevant annotated data in histopathology. The manual annotation of ground-truth for artifact detection methods is expensive and time-consuming. This work addresses the issue by proposing a method dedicated to augmenting whole slide images with artifacts. The tool seamlessly generates and blends artifacts from an external library to a given histopathology dataset. The augmented datasets are then utilized to train artifact classification methods. The evaluation shows their usefulness in classification of the artifacts, where they show an improvement from 0.10 to 0.01 AUROC depending on the artifact type. The framework, model, weights, and ground-truth annotations are freely released to facilitate open science and reproducible research.
The ACROBAT 2022 Challenge: Automatic Registration Of Breast Cancer Tissue
The alignment of tissue between histopathological whole-slide-images (WSI) is crucial for research and clinical applications. Advances in computing, deep learning, and availability of large WSI datasets have revolutionised WSI analysis. Therefore, the current state-of-the-art in WSI registration is unclear. To address this, we conducted the ACROBAT challenge, based on the largest WSI registration dataset to date, including 4,212 WSIs from 1,152 breast cancer patients. The challenge objective was to align WSIs of tissue that was stained with routine diagnostic immunohistochemistry to its H&E-stained counterpart. We compare the performance of eight WSI registration algorithms, including an investigation of the impact of different WSI properties and clinical covariates. We find that conceptually distinct WSI registration methods can lead to highly accurate registration performances and identify covariates that impact performances across methods. These results establish the current state-of-the-art in WSI registration and guide researchers in selecting and developing methods.
The Brain Tumor Sequence Registration (BraTS-Reg) Challenge: Establishing Correspondence Between Pre-Operative and Follow-up MRI Scans of Diffuse Glioma Patients
Registration of longitudinal brain MRI scans containing pathologies is challenging due to dramatic changes in tissue appearance. Although there has been progress in developing general-purpose medical image registration techniques, they have not yet attained the requisite precision and reliability for this task, highlighting its inherent complexity. Here we describe the Brain Tumor Sequence Registration (BraTS-Reg) challenge, as the first public benchmark environment for deformable registration algorithms focusing on estimating correspondences between pre-operative and follow-up scans of the same patient diagnosed with a diffuse brain glioma. The BraTS-Reg data comprise de-identified multi-institutional multi-parametric MRI (mpMRI) scans, curated for size and resolution according to a canonical anatomical template, and divided into training, validation, and testing sets. Clinical experts annotated ground truth (GT) landmark points of anatomical locations distinct across the temporal domain. Quantitative evaluation and ranking were based on the Median Euclidean Error (MEE), Robustness, and the determinant of the Jacobian of the displacement field. The top-ranked methodologies yielded similar performance across all evaluation metrics and shared several methodological commonalities, including pre-alignment, deep neural networks, inverse consistency analysis, and test-time instance optimization per-case basis as a post-processing step. The top-ranked method attained the MEE at or below that of the inter-rater variability for approximately 60% of the evaluated landmarks, underscoring the scope for further accuracy and robustness improvements, especially relative to human experts. The aim of BraTS-Reg is to continue to serve as an active resource for research, with the data and online evaluation tools accessible at https://bratsreg.github.io/.