Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
376 result(s) for "K, Venkatachalam"
Sort by:
Novel chaotic oppositional fruit fly optimization algorithm for feature selection applied on COVID 19 patients’ health prediction
The fast-growing quantity of information hinders the process of machine learning, making it computationally costly and with substandard results. Feature selection is a pre-processing method for obtaining the optimal subset of features in a data set. Optimization algorithms struggle to decrease the dimensionality while retaining accuracy in high-dimensional data set. This article proposes a novel chaotic opposition fruit fly optimization algorithm, an improved variation of the original fruit fly algorithm, advanced and adapted for binary optimization problems. The proposed algorithm is tested on ten unconstrained benchmark functions and evaluated on twenty-one standard datasets taken from the Univesity of California, Irvine repository and Arizona State University. Further, the presented algorithm is assessed on a coronavirus disease dataset, as well. The proposed method is then compared with several well-known feature selection algorithms on the same datasets. The results prove that the presented algorithm predominantly outperform other algorithms in selecting the most relevant features by decreasing the number of utilized features and improving classification accuracy.
Modified firefly algorithm for workflow scheduling in cloud-edge environment
Edge computing is a novel technology, which is closely related to the concept of Internet of Things. This technology brings computing resources closer to the location where they are consumed by end-users—to the edge of the cloud. In this way, response time is shortened and lower network bandwidth is utilized. Workflow scheduling must be addressed to accomplish these goals. In this paper, we propose an enhanced firefly algorithm adapted for tackling workflow scheduling challenges in a cloud-edge environment. Our proposed approach overcomes observed deficiencies of original firefly metaheuristics by incorporating genetic operators and quasi-reflection-based learning procedure. First, we have validated the proposed improved algorithm on 10 modern standard benchmark instances and compared its performance with original and other improved state-of-the-art metaheuristics. Secondly, we have performed simulations for a workflow scheduling problem with two objectives—cost and makespan. We performed comparative analysis with other state-of-the-art approaches that were tested under the same experimental conditions. Algorithm proposed in this paper exhibits significant enhancements over the original firefly algorithm and other outstanding metaheuristics in terms of convergence speed and results’ quality. Based on the output of conducted simulations, the proposed improved firefly algorithm obtains prominent results and managed to establish improvement in solving workflow scheduling in cloud-edge by reducing makespan and cost compared to other approaches.
Adsorptive separation of food and textile dyes from aqueous solution by SBA-15 supported polyaniline/polypyrrole composite: isotherms, kinetics, thermodynamics and recyclability study
The copolymerization of aniline and pyrrole in the presence of SBA-15 resulted in the formation of the SBA-15/PANI/PPy composite. Low-angle and wide-angle X-ray diffraction (XRD), Fourier transformed infra-red spectroscopy (FT-IR), Field emission scanning electron microscopy (FESEM), Thermo gravimetric analysis (TGA), High resolution transmission electron microscopy (HRTEM) and Brunauer–Emmett–Teller (BET) analysis were used to characterize the materials. The effects of pH, adsorbent amount, dye concentration, contact time and temperature on the removal of sunset yellow, indigo carmine, titan yellow and orange G dyes from aqueous solutions were investigated using adsorption techniques. From the low-angle XRD analysis, the peaks confirm the formation of a mesoporous SBA-15 (p6mm, hexagonal) structure. From FT-IR analysis, the peaks at 1568, 1492 and 1399 cm −1 are attributed to the C=C pyrrole ring and C–N stretching vibrations of aniline. The FESEM image of SBA-15 reveals that the structure exhibits a worm-like, folded morphology. The HRTEM image of the SBA-15/PANI/PPy composite showed that the mesopores are arranged in an orderly manner. Additionally, there are dark spots on it as a result of the polypyrrole and polyaniline being present. All of the dyes were removed with efficiency higher than 95%. The isotherm was confirmed to match the Langmuir isotherm model because the R 2 value for all dyes was greater than 0.99. Sunset yellow, indigo carmine, titan yellow, and orange G had maximum adsorption capacities of 476.19, 384.61, 500.00 and 625.00 mg/g, respectively. The adsorption kinetics followed a pseudo-second-order model and the R 2 value for all dyes was greater than 0.99. The thermodynamic parameters ΔG°, ΔS° and ΔH° all had negative values, indicating that the adsorption was spontaneous, decreased entropy, and exothermic. For five cycles, the SBA-15/PANI/PPy composite showed a 95% removal efficiency of dyes. Therefore, the prepared adsorbent can be used to clean industrial effluents that contain dyes.
Deep learning model for deep fake face recognition and detection
Deep Learning is an effective technique and used in various fields of natural language processing, computer vision, image processing and machine vision. Deep fakes uses deep learning technique to synthesis and manipulate image of a person in which human beings cannot distinguish the fake one. By using generative adversarial neural networks (GAN) deep fakes are generated which may threaten the public. Detecting deep fake image content plays a vital role. Many research works have been done in detection of deep fakes in image manipulation. The main issues in the existing techniques are inaccurate, consumption time is high. In this work we implement detecting of deep fake face image analysis using deep learning technique of fisherface using Local Binary Pattern Histogram (FF-LBPH). Fisherface algorithm is used to recognize the face by reduction of the dimension in the face space using LBPH. Then apply DBN with RBM for deep fake detection classifier. The public data sets used in this work are FFHQ, 100K-Faces DFFD, CASIA-WebFace.
Hybridized sine cosine algorithm with convolutional neural networks dropout regularization application
Deep learning has recently been utilized with great success in a large number of diverse application domains, such as visual and face recognition, natural language processing, speech recognition, and handwriting identification. Convolutional neural networks, that belong to the deep learning models, are a subtype of artificial neural networks, which are inspired by the complex structure of the human brain and are often used for image classification tasks. One of the biggest challenges in all deep neural networks is the overfitting issue, which happens when the model performs well on the training data, but fails to make accurate predictions for the new data that is fed into the model. Several regularization methods have been introduced to prevent the overfitting problem. In the research presented in this manuscript, the overfitting challenge was tackled by selecting a proper value for the regularization parameter dropout by utilizing a swarm intelligence approach. Notwithstanding that the swarm algorithms have already been successfully applied to this domain, according to the available literature survey, their potential is still not fully investigated. Finding the optimal value of dropout is a challenging and time-consuming task if it is performed manually. Therefore, this research proposes an automated framework based on the hybridized sine cosine algorithm for tackling this major deep learning issue. The first experiment was conducted over four benchmark datasets: MNIST, CIFAR10, Semeion, and UPS, while the second experiment was performed on the brain tumor magnetic resonance imaging classification task. The obtained experimental results are compared to those generated by several similar approaches. The overall experimental results indicate that the proposed method outperforms other state-of-the-art methods included in the comparative analysis in terms of classification error and accuracy.
Novel hybrid firefly algorithm: an application to enhance XGBoost tuning for intrusion detection classification
The research proposed in this article presents a novel improved version of the widely adopted firefly algorithm and its application for tuning and optimising XGBoost classifier hyper-parameters for network intrusion detection. One of the greatest issues in the domain of network intrusion detection systems are relatively high false positives and false negatives rates. In the proposed study, by using XGBoost classifier optimised with improved firefly algorithm, this challenge is addressed. Based on the established practice from the modern literature, the proposed improved firefly algorithm was first validated on 28 well-known CEC2013 benchmark instances a comparative analysis with the original firefly algorithm and other state-of-the-art metaheuristics was conducted. Afterwards, the devised method was adopted and tested for XGBoost hyper-parameters optimisation and the tuned classifier was tested on the widely used benchmarking NSL-KDD dataset and more recent USNW-NB15 dataset for network intrusion detection. Obtained experimental results prove that the proposed metaheuristics has significant potential in tackling machine learning hyper-parameters optimisation challenge and that it can be used for improving classification accuracy and average precision of network intrusion detection systems.
Chaotic Harris Hawks Optimization with Quasi-Reflection-Based Learning: An Application to Enhance CNN Design
The research presented in this manuscript proposes a novel Harris Hawks optimization algorithm with practical application for evolving convolutional neural network architecture to classify various grades of brain tumor using magnetic resonance imaging. The proposed improved Harris Hawks optimization method, which belongs to the group of swarm intelligence metaheuristics, further improves the exploration and exploitation abilities of the basic algorithm by incorporating a chaotic population initialization and local search, along with a replacement strategy based on the quasi-reflection-based learning procedure. The proposed method was first evaluated on 10 recent CEC2019 benchmarks and the achieved results are compared with the ones generated by the basic algorithm, as well as with results of other state-of-the-art approaches that were tested under the same experimental conditions. In subsequent empirical research, the proposed method was adapted and applied for a practical challenge of convolutional neural network design. The evolved network structures were validated against two datasets that contain images of a healthy brain and brain with tumors. The first dataset comprises well-known IXI and cancer imagining archive images, while the second dataset consists of axial T1-weighted brain tumor images, as proposed in one recently published study in the Q1 journal. After performing data augmentation, the first dataset encompasses 8.000 healthy and 8.000 brain tumor images with grades I, II, III, and IV and the second dataset includes 4.908 images with Glioma, Meningioma, and Pituitary, with 1.636 images belonging to each tumor class. The swarm intelligence-driven convolutional neural network approach was evaluated and compared to other, similar methods and achieved a superior performance. The obtained accuracy was over 95% in all conducted experiments. Based on the established results, it is reasonable to conclude that the proposed approach could be used to develop networks that can assist doctors in diagnostics and help in the early detection of brain tumors.
Optimized convolutional neural network by firefly algorithm for magnetic resonance image classification of glioma brain tumor grade
The most frequent brain tumor types are gliomas. The magnetic resonance imaging technique helps to make the diagnosis of brain tumors. It is hard to get the diagnosis in the early stages of the glioma brain tumor, although the specialist has a lot of experience. Therefore, for the magnetic resonance imaging interpretation, a reliable and efficient system is required which helps the doctor to make the diagnosis in early stages. To make classification of the images, to which class the glioma belongs, convolutional neural networks, which proved that they can obtain an excellent performance in the image classification tasks, can be used. Convolutional network hyperparameters’ tuning is a very important issue in this domain for achieving high accuracy on the image classification; however, this task takes a lot of computational time. Approaching this issue, in this manuscript, we propose a metaheuristics method to automatically find the near-optimal values of convolutional neural network hyperparameters based on a modified firefly algorithm and develop a system for automatic image classification of glioma brain tumor grades from magnetic resonance imaging. First, we have tested the proposed modified algorithm on the set of standard unconstrained benchmark functions and the performance is compared to the original algorithm and other modified variants. Upon verifying the efficiency of the proposed approach in general, it is applied for hyperparameters’ optimization of the convolutional neural network. The IXI dataset and the cancer imaging archive with more collections of data are used for evaluation purposes, and additionally, the method is evaluated on the axial brain tumor images. The obtained experimental results and comparative analysis with other state-of-the-art algorithms tested under the same conditions show the robustness and efficiency of the proposed method.
Hybrid Fruit-Fly Optimization Algorithm with K-Means for Text Document Clustering
The fast-growing Internet results in massive amounts of text data. Due to the large volume of the unstructured format of text data, extracting relevant information and its analysis becomes very challenging. Text document clustering is a text-mining process that partitions the set of text-based documents into mutually exclusive clusters in such a way that documents within the same group are similar to each other, while documents from different clusters differ based on the content. One of the biggest challenges in text clustering is partitioning the collection of text data by measuring the relevance of the content in the documents. Addressing this issue, in this work a hybrid swarm intelligence algorithm with a K-means algorithm is proposed for text clustering. First, the hybrid fruit-fly optimization algorithm is tested on ten unconstrained CEC2019 benchmark functions. Next, the proposed method is evaluated on six standard benchmark text datasets. The experimental evaluation on the unconstrained functions, as well as on text-based documents, indicated that the proposed approach is robust and superior to other state-of-the-art methods.
DeepFND: an ensemble-based deep learning approach for the optimization and improvement of fake news detection in digital platform
Early identification of false news is now essential to save lives from the dangers posed by its spread. People keep sharing false information even after it has been debunked. Those responsible for spreading misleading information in the first place should face the consequences, not the victims of their actions. Understanding how misinformation travels and how to stop it is an absolute need for society and government. Consequently, the necessity to identify false news from genuine stories has emerged with the rise of these social media platforms. One of the tough issues of conventional methodologies is identifying false news. In recent years, neural network models’ performance has surpassed that of classic machine learning approaches because of their superior feature extraction. This research presents Deep learning-based Fake News Detection (DeepFND). This technique has Visual Geometry Group 19 (VGG-19) and Bidirectional Long Short Term Memory (Bi-LSTM) ensemble models for identifying misinformation spread through social media. This system uses an ensemble deep learning (DL) strategy to extract characteristics from the article’s text and photos. The joint feature extractor and the attention modules are used with an ensemble approach, including pre-training and fine-tuning phases. In this article, we utilized a unique customized loss function. In this research, we look at methods for detecting bogus news on the internet without human intervention. We used the Weibo, liar, PHEME, fake and real news, and Buzzfeed datasets to analyze fake and real news. Multiple methods for identifying fake news are compared and contrasted. Precision procedures have been used to calculate the proposed model’s output. The model’s 99.88% accuracy is better than expected.