Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
19 result(s) for "KARIMI, ROXANNE"
Sort by:
Contrasting Food Web Factor and Body Size Relationships with Hg and Se Concentrations in Marine Biota
Marine fish and shellfish are primary sources of human exposure to mercury, a potentially toxic metal, and selenium, an essential element that may protect against mercury bioaccumulation and toxicity. Yet we lack a thorough understanding of Hg and Se patterns in common marine taxa, particularly those that are commercially important, and how food web and body size factors differ in their influence on Hg and Se patterns. We compared Hg and Se content among marine fish and invertebrate taxa collected from Long Island, NY, and examined associations between Hg, Se, body length, trophic level (measured by δ(15)N) and degree of pelagic feeding (measured by δ(13)C). Finfish, particularly shark, had high Hg content whereas bivalves generally had high Se content. Both taxonomic differences and variability were larger for Hg than Se, and Hg content explained most of the variation in Hg:Se molar ratios among taxa. Finally, Hg was more strongly associated with length and trophic level across taxa than Se, consistent with a greater degree of Hg bioaccumulation in the body over time, and biomagnification through the food web, respectively. Overall, our findings indicate distinct taxonomic and ecological Hg and Se patterns in commercially important marine biota, and these patterns have nutritional and toxicological implications for seafood-consuming wildlife and humans.
Stoichiometric Controls of Mercury Dilution by Growth
Rapid growth could significantly reduce methylmercury (MeHg) concentrations in aquatic organisms by causing a greater than proportional gain in biomass relative to MeHg (somatic growth dilution). We hypothesized that rapid growth from the consumption of high-quality algae, defined by algal nutrient stoichiometry, reduces MeHg concentrations in Zooplankton, a major source of MeHg for lake fish. Using a MeHg radiotracer, we measured changes in MeHg concentrations, growth and ingestion rates in juvenile Daphnia pulex fed either high (C:P = 139) or low-quality (C:P = 1317) algae (Ankistrodesmus falcatus) for 5 d. We estimated Daphnia steady-state MeHg concentrations, using a biokinetic model parameterized with experimental rates. Daphnia MeHg assimilation efficiencies (≈95%) and release rates (0.04 d⁻¹) were unaffected by algal nutrient quality. However, Daphnia growth rate was 3.5 times greater when fed high-quality algae, resulting in pronounced somatic growth dilution. Steady-state MeHg concentrations in Daphnia that consumed high-quality algae were one-third those of Daphnia that consumed low-quality algae due to higher growth and slightly lower ingestion rates. Our findings show that rapid growth from high-quality food consumption can significantly reduce the accumulation and trophic transfer of MeHg in freshwater food webs.
Low levels of lead and glutathione markers of redox status in human blood
Exposure to lead (Pb) is implicated in a plethora of health threats in both adults and children. Increased exposure levels are associated with oxidative stress in the blood of workers exposed at occupational levels. However, it is not known whether lower Pb exposure levels are related to a shift toward a more oxidized state. To assess the association between blood lead level (BLL) and glutathione (GSH) redox biomarkers in a population of healthy adults, BLL and four GSH markers (GSH, GSSG, GSH/GSSG ratio and redox potential Eh) were measured in the blood of a cross-sectional cohort of 282 avid seafood-eating healthy adults living on Long Island (NY). Additionally, blood levels of two other metals known to affect GSH redox status, selenium (Se) and mercury (Hg), and omega-3 index were tested for effect modification. Regression models were further adjusted for demographic and smoking status. Increasing exposure to Pb, measured in blood, was not associated with GSSG, but was associated with lower levels of GSH/GSSG ratio and more positive GSH redox potential Eh, driven by its association with GSH. No effect modification was observed in analyses stratified by Hg, Se, omega-3 index, sex, age, or smoking. Blood Pb is associated with lower levels of GSH and the GSH/GSSG ratio in this cross-sectional study of healthy adults.
Sustaining seafood for public health
Concern about the collapse of overexploited fish populations and the safety of consuming seafood can complicate determining what types of fish are best to eat. In recent years, public attention has become increasingly focused on oceanic environmental contaminants, which may be toxic to seafood consumers in sufficient doses. Laudable education campaigns have been established to inform consumers about seafood choices that are sustainable, and to provide information on which fish are deemed safe for human consumption. We found that unsustainable seafood items also present higher health risks (as indexed by mercury concentrations) and do not necessarily provide greater health benefits (as indexed by omega-3 fatty acid concentrations) as compared with sustainable seafood items. Our results have broad implications for identifying effective approaches for informing consumers about the health risks and benefits of different seafood choices, while simultaneously addressing the ecological consequences of fishing and fish farming.
An assessment of temporal trends in mercury concentrations in fish
The importance of fish consumption as the primary pathway of human exposure to mercury and the establishment of fish consumption advisories to protect human health have led to large fish tissue monitoring programs worldwide. Data on fish tissue mercury concentrations collected by state, tribal, and provincial governments via contaminant monitoring programs have been compiled into large data bases by the U.S. Environmental Protection Agency’s Great Lakes National Monitoring Program Office (GLNPO), the Ontario Ministry of the Environment’s Fish Contaminants Monitoring and Surveillance Program (FMSP), and many others. These data have been used by a wide range of governmental and academic investigators worldwide to examine long-term and recent trends in fish tissue mercury concentrations. The largest component of the trend literature is for North American freshwater species important in recreational fisheries. This review of temporal trends in fish tissue mercury concentrations focused on published results from freshwater fisheries of North America as well as marine fisheries worldwide. Trends in fish tissue mercury concentrations in North American lakes with marked overall decreases were reported over the period 1972–2016. These trends are consistent with reported mercury emission declines as well as trends in wet deposition across the U.S. and Canada. More recently, a leveling-off in the rate of decreases or increases in fish tissue mercury concentrations has been reported. Increased emissions of mercury from global sources beginning between 1990 and 1995, despite a decrease in North American emissions, have been advanced as an explanation for the observed changes in fish tissue trends. In addition to increased atmospheric deposition, the other factors identified to explain the observed mercury increases in the affected fish species include a systematic shift in the food-web structure with the introduction of non-native species, creating a new or expanding role for sediments as a net source for mercury. The influences of climate change have also been identified as contributing factors, including considerations such as increases in temperature (resulting in metabolic changes and higher uptake rates of methylmercury), increased rainfall intensity and runoff (hydrologic export of organic matter carrying HgII from watersheds to surface water), and water level fluctuations that alter either the methylation of mercury or the mobilization of monomethylmercury. The primary source of mercury exposure in the human diet in North America is from the commercial fish and seafood market which is dominated (>90%) by marine species. However, very little information is available on mercury trends in marine fisheries. Most of the data used in the published marine trend studies are assembled from earlier reports. The data collection efforts are generally intermittent, and the spatial and fish-size distribution of the target species vary widely. As a result, convincing evidence for the existence of fish tissue mercury trends in marine fish is generally lacking. However, there is some evidence from sampling of large, long-lived commercially-important fish showing both lower mercury concentrations in the North Atlantic in response to reduced anthropogenic mercury emission rates in North America and increases in fish tissue mercury concentrations over time in the North Pacific in response to increased mercury loading.
A Quantitative Synthesis of Mercury in Commercial Seafood and Implications for Exposure in the United States
Background: Mercury (Hg) is a toxic metal that presents public health risks through fish consumption. A major source of uncertainty in evaluating harmful exposure is inadequate knowledge of Hg concentrations in commercially important seafood. Objectives: We examined patterns, variability, and knowledge gaps of Hg in common commercial seafood items in the United States and compared seafood Hg concentrations from our database to those used for exposure estimates and consumption advice. Methods: We developed a database of Hg concentrations in fish and shellfish common to the U.S. market by aggregating available data from government monitoring programs and the scientific literature. We calculated a grand mean for individual seafood items, based on reported means from individual studies, weighted by sample size. We also compared database results to those of federal programs and human health criteria [U.S. Food and Drug Administration Hg Monitoring Program (FDA-MP), U.S. Environmental Protection Agency (EPA)]. Results: Mean Hg concentrations for each seafood item were highly variable among studies, spanning 0.3—2.4 orders of magnitude. Farmed fish generally had lower grand mean Hg concentrations than their wild counterparts, with wild seafood having 2- to 12-fold higher concentrations, depending on the seafood item. However, farmed fish are relatively understudied, as are specific seafood items and seafood imports from Asia and South America. Finally, we found large discrepancies between mean Hg concentrations estimated from our database and FDA-MP estimates for most seafood items examined. Conclusions: The high variability in Hg in common seafood items has considerable ramifications for public health and the formulation of consumption guidelines. Exposure and risk analyses derived from smaller data sets do not reflect our collective, available information on seafood Hg concentrations.
Mercury, selenium and fish oils in marine food webs and implications for human health
Humans who eat fish are exposed to mixtures of healthful nutrients and harmful contaminants that are influenced by environmental and ecological factors. Marine fisheries are composed of a multitude of species with varying life histories, and harvested in oceans, coastal waters and estuaries where environmental and ecological conditions determine fish exposure to both nutrients and contaminants. Many of these nutrients and contaminants are thought to influence similar health outcomes (i.e., neurological, cardiovascular, immunological systems). Therefore, our understanding of the risks and benefits of consuming seafood require balanced assessments of contaminants and nutrients found in fish and shellfish. In this paper, we review some of the reported benefits of fish consumption with a focus on the potential hazards of mercury exposure, and compare the environmental variability of fish oils, selenium and mercury in fish. A major scientific gap identified is that fish tissue concentrations are rarely measured for both contaminants and nutrients across a range of species and geographic regions. Interpreting the implications of seafood for human health will require a better understanding of these multiple exposures, particularly as environmental conditions in the oceans change.
Stoichiometric Ecotoxicology for a Multisubstance World
Nutritional and contaminant stressors influence organismal physiology, trophic interactions, community structure, and ecosystem-level processes; however, the interactions between toxicity and elemental imbalance in food resources have been examined in only a few ecotoxicity studies. Integrating well-developed ecological theories that cross all levels of biological organization can enhance our understanding of ecotoxicology. In the present article, we underline the opportunity to couple concepts and approaches used in the theory of ecological stoichiometry (ES) to ask ecotoxicological questions and introduce stoichiometric ecotoxicology, a subfield in ecology that examines how contaminant stress, nutrient supply, and elemental constraints interact throughout all levels of biological organization. This conceptual framework unifying ecotoxicology with ES offers potential for both empirical and theoretical studies to deepen our mechanistic understanding of the adverse outcomes of chemicals across ecological scales and improve the predictive powers of ecotoxicology.
Multielement Stoichiometry in Aquatic Invertebrates: When Growth Dilution Matters
Element concentrations in organisms can be variable, often causing deviations from otherwise consistent, taxon‐specific multielement stoichiometries. Such variation can have considerable ecological consequences, yet physiological mechanisms remain unclear. We tested the influence of somatic growth dilution (SGD) on multiple element concentrations under different bioenergetic conditions. SGD occurs when rapid individual growth causes a disproportional gain in biomass relative to gain of a specific element. SGD can strongly affect elements in various organisms, but we lack a general framework to unify results across studies and assess its overall importance. We derived the general conditions that trigger SGD from an element accumulation model. We parameterized the model with bioenergetic and element‐specific rates summarized from the literature to compare SGD effects on 15 elements (nonessential metals, essential trace elements, macronutrients) in three aquatic invertebrate taxa. For all taxa, we found that SGD (1) occurs to some degree for all 15 elements over realistic ranges of growth and ingestion rates and (2) has the greatest effect on elements with low efflux (excretion) rates, including certain nonessential metals (e.g., MeHg, Po), essential trace elements, and macronutrients (e.g., N, Fe). Thus, SGD can strongly affect concentrations of a spectrum of elements under natural conditions. These results provide a framework for predicting variation in the elemental composition of animals.
Demographic Profiles, Mercury, Selenium, and Omega-3 Fatty Acids in Avid Seafood Consumers on Long Island, NY
Seafood consumption is known to confer nutritional benefits and risks from contaminant exposure. Avid seafood consumers are neither well-characterized with regard to their demographic profile nor their underlying risk–benefit profile. Contaminants [e.g., mercury (Hg)] and nutrients [e.g., selenium (Se), omega-3 fatty acids] are prevalent in some seafood. Participants (N = 285) recruitedonLongIsland, NY, completed food frequency and health questionnaires and received blood draws analyzed for Hg, omega-3s, and Se. Participants were categorized based on frequency and type of seafood consumption. Logistic regression analyses evaluated relationships between seafood consumption and demographics, and were age-and sex-adjusted. t tests assessed relationships between seafood consumption patterns and biomarkers Hg, omega-3s, and Se. Consumption of both tuna and salmon was associated with older age: those aged 55–75 and over 75 years old were more likely than participants aged 18–34 to eat tuna and salmon (OR 2.27; 95 % CI 1.05, 4.89 and OR 3.67; 95 % CI 1.20, 11.20, respectively). Males were less likely than females to eat fish other than tuna or salmon (OR 0.58; 95 % CI 0.34, 0.97). Caucasians were more likely to consume tuna (OR 0.31; 95 % CI 0.10, 0.96) or salmon and tuna (OR 0.34; 95 % CI 0.12, 0.91), while non-Caucasians were more likely to consume other fish types (OR 2.73; 95 % CI 1.45, 5.12). Total blood Hg was associated with weekly consumption of any type of fish (p = 0.01) and with salmon and tuna consumption (p = 0.01). Salmon was associated with plasma omega-3s (p = 0.01). Se was not associated with fish intake categories. Risk communicators can use these findings to influence seafood preferences of different demographic groups.