Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
58 result(s) for "KELLING, STEVE"
Sort by:
Robust sound event detection in bioacoustic sensor networks
Bioacoustic sensors, sometimes known as autonomous recording units (ARUs), can record sounds of wildlife over long periods of time in scalable and minimally invasive ways. Deriving per-species abundance estimates from these sensors requires detection, classification, and quantification of animal vocalizations as individual acoustic events. Yet, variability in ambient noise, both over time and across sensors, hinders the reliability of current automated systems for sound event detection (SED), such as convolutional neural networks (CNN) in the time-frequency domain. In this article, we develop, benchmark, and combine several machine listening techniques to improve the generalizability of SED models across heterogeneous acoustic environments. As a case study, we consider the problem of detecting avian flight calls from a ten-hour recording of nocturnal bird migration, recorded by a network of six ARUs in the presence of heterogeneous background noise. Starting from a CNN yielding state-of-the-art accuracy on this task, we introduce two noise adaptation techniques, respectively integrating short-term (60 ms) and long-term (30 min) context. First, we apply per-channel energy normalization (PCEN) in the time-frequency domain, which applies short-term automatic gain control to every subband in the mel-frequency spectrogram. Secondly, we replace the last dense layer in the network by a context-adaptive neural network (CA-NN) layer, i.e. an affine layer whose weights are dynamically adapted at prediction time by an auxiliary network taking long-term summary statistics of spectrotemporal features as input. We show that PCEN reduces temporal overfitting across dawn vs. dusk audio clips whereas context adaptation on PCEN-based summary statistics reduces spatial overfitting across sensor locations. Moreover, combining them yields state-of-the-art results that are unmatched by artificial data augmentation alone. We release a pre-trained version of our best performing system under the name of BirdVoxDetect, a ready-to-use detector of avian flight calls in field recordings.
Analytical guidelines to increase the value of community science data
Aim Ecological data collected by the general public are valuable for addressing a wide range of ecological research and conservation planning, and there has been a rapid increase in the scope and volume of data available. However, data from eBird or other large‐scale projects with volunteer observers typically present several challenges that can impede robust ecological inferences. These challenges include spatial bias, variation in effort and species reporting bias. Innovation We use the example of estimating species distributions with data from eBird, a community science or citizen science (CS) project. We estimate two widely used metrics of species distributions: encounter rate and occupancy probability. For each metric, we critically assess the impact of data processing steps that either degrade or refine the data used in the analyses. CS data density varies widely across the globe, so we also test whether differences in model performance are robust to sample size. Main conclusions Model performance improved when data processing and analytical methods addressed the challenges arising from CS data; however, the degree of improvement varied with species and data density. The largest gains we observed in model performance were achieved with 1) the use of complete checklists (where observers report all the species they detect and identify, allowing non‐detections to be inferred) and 2) the use of covariates describing variation in effort and detectability for each checklist. Occupancy models were more robust to a lack of complete checklists. Improvements in model performance with data refinement were more evident with larger sample sizes. In general, we found that the value of each refinement varied by situation and we encourage researchers to assess the benefits in other scenarios. These approaches will enable researchers to more effectively harness the vast ecological knowledge that exists within CS data for conservation and basic research.
eBird: Engaging Birders in Science and Conservation
How do you successfully engage an audience in a citizen-science project? The processes developed by eBird (www.ebird.org), a fast-growing web-based tool that now gathers millions of bird observations per month, offers a model.
Citizen Science: A Developing Tool for Expanding Science Knowledge and Scientific Literacy
Citizen science enlists the public in collecting large quantities of data across an array of habitats and locations over long spans of time. Citizen science projects have been remarkably successful in advancing scientific knowledge, and contributions from citizen scientists now provide a vast quantity of data about species occurrence and distribution around the world. Most citizen science projects also strive to help participants learn about the organisms they are observing and to experience the process by which scientific investigations are conducted. Developing and implementing public data-collection projects that yield both scientific and educational outcomes requires significant effort. This article describes the model for building and operating citizen science projects that has evolved at the Cornell Lab of Ornithology over the past two decades. We hope that our model will inform the fields of biodiversity monitoring, biological research, and science education while providing a window into the culture of citizen science.
Towards the Automatic Classification of Avian Flight Calls for Bioacoustic Monitoring
Automatic classification of animal vocalizations has great potential to enhance the monitoring of species movements and behaviors. This is particularly true for monitoring nocturnal bird migration, where automated classification of migrants' flight calls could yield new biological insights and conservation applications for birds that vocalize during migration. In this paper we investigate the automatic classification of bird species from flight calls, and in particular the relationship between two different problem formulations commonly found in the literature: classifying a short clip containing one of a fixed set of known species (N-class problem) and the continuous monitoring problem, the latter of which is relevant to migration monitoring. We implemented a state-of-the-art audio classification model based on unsupervised feature learning and evaluated it on three novel datasets, one for studying the N-class problem including over 5000 flight calls from 43 different species, and two realistic datasets for studying the monitoring scenario comprising hundreds of thousands of audio clips that were compiled by means of remote acoustic sensors deployed in the field during two migration seasons. We show that the model achieves high accuracy when classifying a clip to one of N known species, even for a large number of species. In contrast, the model does not perform as well in the continuous monitoring case. Through a detailed error analysis (that included full expert review of false positives and negatives) we show the model is confounded by varying background noise conditions and previously unseen vocalizations. We also show that the model needs to be parameterized and benchmarked differently for the continuous monitoring scenario. Finally, we show that despite the reduced performance, given the right conditions the model can still characterize the migration pattern of a specific species. The paper concludes with directions for future research.
Convergence of broad-scale migration strategies in terrestrial birds
Migration is a common strategy used by birds that breed in seasonal environments. Selection for greater migration efficiency is likely to be stronger for terrestrial species whose migration strategies require non-stop transoceanic crossings. If multiple species use the same transoceanic flyway, then we expect the migration strategies of these species to converge geographically towards the most optimal solution. We test this by examining population-level migration trajectories within the Western Hemisphere for 118 migratory species using occurrence information from eBird. Geographical convergence of migration strategies was evident within specific terrestrial regions where geomorphological features such as mountains or isthmuses constrained overland migration. Convergence was also evident for transoceanic migrants that crossed the Gulf of Mexico or Atlantic Ocean. Here, annual population-level movements were characterized by clockwise looped trajectories, which resulted in faster but more circuitous journeys in the spring and more direct journeys in the autumn. These findings suggest that the unique constraints and requirements associated with transoceanic migration have promoted the spatial convergence of migration strategies. The combination of seasonal atmospheric and environmental conditions that has facilitated the use of similar broad-scale migration strategies may be especially prone to disruption under climate and land-use change.
Can Observation Skills of Citizen Scientists Be Estimated Using Species Accumulation Curves?
Volunteers are increasingly being recruited into citizen science projects to collect observations for scientific studies. An additional goal of these projects is to engage and educate these volunteers. Thus, there are few barriers to participation resulting in volunteer observers with varying ability to complete the project's tasks. To improve the quality of a citizen science project's outcomes it would be useful to account for inter-observer variation, and to assess the rarely tested presumption that participating in a citizen science projects results in volunteers becoming better observers. Here we present a method for indexing observer variability based on the data routinely submitted by observers participating in the citizen science project eBird, a broad-scale monitoring project in which observers collect and submit lists of the bird species observed while birding. Our method for indexing observer variability uses species accumulation curves, lines that describe how the total number of species reported increase with increasing time spent in collecting observations. We find that differences in species accumulation curves among observers equates to higher rates of species accumulation, particularly for harder-to-identify species, and reveals increased species accumulation rates with continued participation. We suggest that these properties of our analysis provide a measure of observer skill, and that the potential to derive post-hoc data-derived measurements of participant ability should be more widely explored by analysts of data from citizen science projects. We see the potential for inferential results from analyses of citizen science data to be improved by accounting for observer skill.
A Double machine learning trend model for citizen science data
Citizen and community science datasets are typically collected using flexible protocols. These protocols enable large volumes of data to be collected globally every year; however, the consequence is that these protocols typically lack the structure necessary to maintain consistent sampling across years. This can result in complex and pronounced interannual changes in the observation process, which can complicate the estimation of population trends because population changes over time are confounded with changes in the observation process. Here we describe a novel modelling approach designed to estimate spatially explicit species population trends while controlling for the interannual confounding common in citizen science data. The approach is based on Double machine learning, a statistical framework that uses machine learning (ML) methods to estimate population change and the propensity scores used to adjust for confounding discovered in the data. ML makes it possible to use large sets of features to control for confounding and to model spatial heterogeneity in trends. Additionally, we present a simulation method to identify and adjust for residual confounding missed by the propensity scores. To illustrate the approach, we estimated species trends using data from the citizen science project eBird. We used a simulation study to assess the ability of the method to estimate spatially varying trends when faced with realistic confounding and temporal correlation. Results demonstrated the ability to distinguish between spatially constant and spatially varying trends. There were low error rates on the estimated direction of population change (increasing/decreasing) at each location and high correlations on the estimated magnitude of population change. The ability to estimate spatially explicit trends while accounting for confounding inherent in citizen science data has the potential to fill important information gaps, helping to estimate population trends for species and/or regions lacking rigorous monitoring data.
characterization of autumn nocturnal migration detected by weather surveillance radars in the northeastern USA
Billions of birds migrate at night over North America each year. However, few studies have described the phenology of these movements, such as magnitudes, directions, and speeds, for more than one migration season and at regional scales. In this study, we characterize density, direction, and speed of nocturnally migrating birds using data from 13 weather surveillance radars in the autumns of 2010 and 2011 in the northeastern USA. After screening radar data to remove precipitation, we applied a recently developed algorithm for characterizing velocity profiles with previously developed methods to document bird migration. Many hourly radar scans contained windborne “contamination,” and these scans also exhibited generally low overall reflectivities. Hourly scans dominated by birds showed nightly and seasonal patterns that differed markedly from those of low reflectivity scans. Bird migration occurred during many nights, but a smaller number of nights with large movements of birds defined regional nocturnal migration. Densities varied by date, time, and location but peaked in the second and third deciles of night during the autumn period when the most birds were migrating. Migration track (the direction to which birds moved) shifted within nights from south‐southwesterly to southwesterly during the seasonal migration peaks; this shift was not consistent with a similar shift in wind direction. Migration speeds varied within nights, although not closely with wind speed. Airspeeds increased during the night; groundspeeds were highest between the second and third deciles of night, when the greatest density of birds was migrating. Airspeeds and groundspeeds increased during the fall season, although groundspeeds fluctuated considerably with prevailing winds. Significant positive correlations characterized relationships among bird densities at southern coastal radar stations and northern inland radar stations. The quantitative descriptions of broadscale nocturnal migration patterns presented here will be essential for biological and conservation applications. These descriptions help to define migration phenology in time and space, fill knowledge gaps in avian annual cycles, and are useful for monitoring long‐term population trends of migrants. Furthermore, these descriptions will aid in assessing potential risks to migrants, particularly from structures with which birds collide and artificial lighting that disorients migrants.