Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
16
result(s) for
"Kaczmarek, Jane F."
Sort by:
A pulsar-like polarization angle swing from a nearby fast radio burst
by
Kirichenko, Aida
,
Eftekhari, Tarraneh
,
Bhardwaj, Mohit
in
639/33/34/4118
,
639/33/34/4127
,
639/33/34/864
2025
Fast radio bursts (FRBs) last for milliseconds and arrive at Earth from cosmological distances. Although their origins and emission mechanisms are unknown, their signals bear similarities with the much less luminous radio emission generated by pulsars within our Miky Way Galaxy
1
, with properties suggesting neutron star origins
2
,
3
. However, unlike pulsars, FRBs typically show minimal variability in their linear polarization position angle (PA) curves
4
. Even when marked PA evolution is present, their curves deviate significantly from the canonical shape predicted by the rotating vector model (RVM) of pulsars
5
. Here we report on FRB 20221022A, detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst project (CHIME/FRB) and localized to a nearby host galaxy (about 65 Mpc), MCG+14-02-011. This FRB shows a notable approximately 130° PA rotation over its about 2.5 ms burst duration, resembling the characteristic S-shaped evolution seen in many pulsars and some radio magnetars. The observed PA evolution supports magnetospheric origins
6
,
7
–
8
over models involving distant shocks
9
,
10
–
11
, echoing similar conclusions drawn from tempo-polarimetric studies of some repeating FRBs
12
,
13
. The PA evolution is well described by the RVM and, although we cannot determine the inclination and magnetic obliquity because of the unknown period or duty cycle of the source, we exclude very short-period pulsars (for example, recycled millisecond pulsars) as the progenitor.
FRB 20221022A, detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst project, shows a pronounced change in polarization during the burst, providing important clues into the nature of the source.
Journal Article
Limits on Fast Radio Burst-like Counterparts to Gamma-ray Bursts using CHIME/FRB
by
Scholz, Paul
,
Pleunis, Ziggy
,
Bhardwaj, Mohit
in
Gamma ray bursts
,
Radio bursts
,
Radio emission
2023
Fast Radio Bursts (FRBs) are a class of highly energetic, mostly extragalactic radio transients lasting for a few milliseconds. While over 600 FRBs have been published so far, their origins are presently unclear, with some theories for extragalactic FRBs predicting accompanying high-energy emission. In this work, we use the Canadian Hydrogen Intensity Mapping Experiment (CHIME) Fast Radio Burst (CHIME/FRB) Project to explore whether any FRB-like radio emission coincides in space and time with 81 gamma-ray bursts (GRBs) detected between 2018 July 17 and 2019 July 8 by Swift/BAT and Fermi/GBM. We do not find any statistically significant, coincident pairs within 3sigma of each other's spatial localization regions and within a time difference of up to one week. In addition to searching for spatial matches between known FRBs and known GRBs, we use CHIME/FRB to constrain FRB-like radio emission before, at the time of, or after the reported high-energy emission at the position of 39 GRBs. Our most constraining radio flux limits in the 400- to 800-MHz band for short gamma-ray bursts (SGRBs) are <50 Jy at 18.6 ks pre-high-energy emission, and <5 Jy at 28.4 ks post-high-energy emission, assuming a 10-ms radio burst width with each limit valid for 60 seconds. We use these limits to constrain models that predict FRB-like prompt radio emission before and after SGRBs. We also place limits as low as 2 Jy for long gamma-ray bursts (LGRBs), but there are no strong theoretical predictions for coincident FRB-like radio emission for LGRBs.
Multi-wavelength follow-up of FRB 180309
by
Prochaska, J Xavier
,
Tejos, Nicolas
,
Pignata, Giuliano
in
Flux density
,
Galaxies
,
Localization
2021
We report on the results of multi-wavelength follow-up observations with Gemini, VLA, and ATCA, to search for a host galaxy and any persistent radio emission associated with FRB 180309. This FRB is among the most luminous FRB detections to date, with a luminosity of \\(> 8.7\\times 10^{32}\\) erg Hz\\(^{-1}\\) at the dispersion-based redshift upper limit of 0.32. We used the high-significance detection of FRB 180309 with the Parkes Telescope and a beam model of the Parkes Multibeam Receiver to improve the localization of the FRB to a region spanning approximately \\(\\sim2'\\times2'\\). We aimed to seek bright galaxies within this region to determine the strongest candidates as the originator of this highly luminous FRB. We identified optical sources within the localization region above our r-band magnitude limit of 24.27, fourteen of which have photometric redshifts whose fitted mean is consistent with the redshift upper limit (\\(z < 0.32\\)) of our FRB. Two of these galaxies are coincident with marginally detected \"persistent\" radio sources of flux density 24.3\\(\\mu\\)Jy beam\\(^{-1}\\) and 22.1\\(\\mu\\)Jy beam\\(^{-1}\\) respectively. Our redshift-dependent limit on the luminosity of any associated persistent radio source is comparable to the luminosity limits for other localized FRBs. We analyze several properties of the candidate hosts we identified, including chance association probability, redshift, and presence of radio emission, however it remains possible that any of these galaxies could be the host of this FRB. Follow-up spectroscopy on these objects to explore their H\\(\\alpha\\) emission and ionization contents, as well as to obtain more precisely measured redshifts, may be able to isolate a single host for this luminous FRB.
CHIME Discovery of a Binary Pulsar with a Massive Non-Degenerate Companion
by
Patel, Chitrang
,
Fonseca, Emmanuel
,
Bhardwaj, Mohit
in
Accretion disks
,
Binary stars
,
Companion stars
2023
Of the more than \\(3{,}000\\) radio pulsars currently known, only \\({\\sim}300\\) are in binary systems, and only five of these consist of young pulsars with massive non-degenerate companions. We present the discovery and initial timing, accomplished using the Canadian Hydrogen Intensity Mapping Experiment telescope (CHIME), of the sixth such binary pulsar, PSR J2108+4516, a \\(0.577\\)-s radio pulsar in a 269-day orbit of eccentricity 0.09 with a companion of minimum mass \\(11\\) M\\(_{\\odot}\\). Notably, the pulsar undergoes periods of substantial eclipse, disappearing from the CHIME \\(400{-}800\\) MHz observing band for a large fraction of its orbit, and displays significant dispersion measure and scattering variations throughout its orbit, pointing to the possibility of a circumstellar disk or very dense stellar wind associated with the companion star. Subarcsecond resolution imaging with the Karl G. Jansky Very Large Array unambiguously demonstrates that the companion is a bright, \\(V \\simeq 11\\) OBe star, EM* UHA 138, located at a distance of \\(3.26(14)\\) kpc. Archival optical observations of \\companion{} approximately suggest a companion mass ranging from \\(17.5\\) M\\(_{\\odot} < M_{\\rm c} < 23\\) M\\(_{\\odot}\\), in turn constraining the orbital inclination angle to \\(50.3^{\\circ} \\lesssim i \\lesssim 58.3^{\\circ}\\). With further multi-wavelength followup, PSR J2108+4516 promises to serve as another rare laboratory for the exploration of companion winds, circumstellar disks, and short-term evolution through extended-body orbital dynamics.
Extremely band-limited repetition from a fast radio burst source
2020
The fast radio burst (FRB) population is observationally divided into sources that have been observed to repeat and those that have not. There is tentative evidence that the bursts from repeating sources have different properties than the non-repeating ones. In order to determine the occurrence rate of repeating sources and characterize the nature of repeat emission, we have been conducting sensitive searches for repetitions from bursts detected with the Australian Square Kilometre Array Pathfinder (ASKAP) with the 64-m Parkes radio telescope, using the recently commissioned Ultra-wideband Low (UWL) receiver system, over a band spanning 0.7\\(-\\)4.0 GHz. We report the detection of a repeat burst from the source of FRB 20190711A. The detected burst is 1 ms wide and has a bandwidth of just 65 MHz. We find no evidence of any emission in the remaining part of the 3.3 GHz UWL band. While the emission bandwidths of the ASKAP and UWL bursts show \\(\\nu^{-4}\\) scaling consistent with a propagation effect, the spectral occupancy is inconsistent with diffractive scintillation. This detection rules out models predicting broad-band emission from the FRB 20190711A source and puts stringent constraints on the emission mechanism. The low spectral occupancy highlights the importance of sub-banded search methods in detecting FRBs.
CHIME/FRB Discovery of 25 Repeating Fast Radio Burst Sources
2023
We present the discovery of 25 new repeating fast radio burst (FRB) sources found among CHIME/FRB events detected between 2019 September 30 and 2021 May 1. The sources were found using a new clustering algorithm that looks for multiple events co-located on the sky having similar dispersion measures (DMs). The new repeaters have DMs ranging from \\(\\sim\\)220 pc cm\\(^{-3}\\) to \\(\\sim\\)1700 pc cm\\(^{-3}\\), and include sources having exhibited as few as two bursts to as many as twelve. We report a statistically significant difference in both the DM and extragalactic DM (eDM) distributions between repeating and apparently nonrepeating sources, with repeaters having lower mean DM and eDM, and we discuss the implications. We find no clear bimodality between the repetition rates of repeaters and upper limits on repetition from apparently nonrepeating sources after correcting for sensitivity and exposure effects, although some active repeating sources stand out as anomalous. We measure the repeater fraction over time and find that it tends to an equilibrium of \\(2.6_{-2.6}^{+2.9}\\)% over our total time-on-sky thus far. We also report on 14 more sources which are promising repeating FRB candidates and which merit follow-up observations for confirmation.
Localizing FRBs through VLBI with the Algonquin Radio Observatory 10-m Telescope
by
Lin, Hsiu-Hsien
,
Patel, Chitrang
,
Berger, Sabrina
in
Angular resolution
,
Differential geometry
,
Field of view
2022
The CHIME/FRB experiment has detected thousands of Fast Radio Bursts (FRBs) due to its sensitivity and wide field of view; however, its low angular resolution prevents it from localizing events to their host galaxies. Very Long Baseline Interferometry (VLBI), triggered by FRB detections from CHIME/FRB will solve the challenge of localization for non-repeating events. Using a refurbished 10-m radio dish at the Algonquin Radio Observatory located in Ontario Canada, we developed a testbed for a VLBI experiment with a theoretical ~<30 masec precision. We provide an overview of the 10-m system and describe its refurbishment, the data acquisition, and a procedure for fringe fitting that simultaneously estimates the geometric delay used for localization and the dispersive delay from the ionosphere. Using single pulses from the Crab pulsar, we validate the system and localization procedure, and analyze the clock stability between sites, which is critical for phase-referencing an FRB event. We find a localization of 50 masec is possible with the performance of the current system. Furthermore, for sources with insufficient signal or restricted wideband to simultaneously measure both geometric and ionospheric delays, we show that the differential ionospheric contribution between the two sites must be measured to a precision of 1e-8 pc/cc to provide a reasonable localization from a detection in the 400--800 MHz band. Finally we show detection of an FRB observed simultaneously in the CHIME and the Algonquin 10-m telescope, the first FRB cross-correlated in this very long baseline. This project serves as a testbed for the forthcoming CHIME/FRB Outriggers project.
Fast Radio Burst Morphology in the First CHIME/FRB Catalog
2021
We present a synthesis of fast radio burst (FRB) morphology (the change in flux as a function of time and frequency) as detected in the 400-800 MHz octave by the FRB project on the Canadian Hydrogen Intensity Mapping Experiment (CHIME/FRB), using events from the first CHIME/FRB catalog. The catalog consists of 61 bursts from 18 repeating sources, plus 474 one-off FRBs, detected between 2018 July 25 and 2019 July 2. We identify four observed archetypes of burst morphology (\"simple broadband,\" \"simple narrowband,\" \"temporally complex\" and \"downward drifting\") and describe relevant instrumental biases that are essential for interpreting the observed morphologies. Using the catalog properties of the FRBs, we confirm that bursts from repeating sources, on average, have larger widths and we show, for the first time, that bursts from repeating sources, on average, are narrower in bandwidth. This difference could be due to a beaming or propagation effects, or it could be intrinsic to the populations. We discuss potential implications of these morphological differences for using FRBs as astrophysical tools.
Probing the emission states of PSR J1107-5907
2019
The emission from PSR J1107-5907 is erratic. Sometimes the radio pulse is undetectable, at other times the pulsed emission is weak, and for short durations the emission can be very bright. In order to improve our understanding of these state changes, we have identified archival data sets from the Parkes radio telescope in which the bright emission is present, and find that the emission never switches from the bright state to the weak state, but instead always transitions to the off state. Previous work had suggested the identification of the off state as an extreme manifestation of the weak state. However, the connection between the off and bright emission reported here suggests that the emission can be interpreted as undergoing only two emission states: a bursting state consisting of both bright pulses and nulls as well as the weak-emission state.
A Synoptic VLBI Technique for Localizing Non-Repeating Fast Radio Bursts with CHIME/FRB
2020
We demonstrate the blind interferometric detection and localization of two fast radio bursts (FRBs) with 2- and 25-arcsecond precision on the 400-m baseline between the Canadian Hydrogen Intensity Mapping Experiment (CHIME) and the CHIME Pathfinder. In the same spirit as very long baseline interferometry (VLBI), the telescopes were synchronized to separate clocks, and the channelized voltage (herein referred to as \"baseband\") data were saved to disk with correlation performed offline. The simultaneous wide field of view and high sensitivity required for blind FRB searches implies a high data rate -- 6.5 terabits per second (Tb/s) for CHIME and 0.8 Tb/s for the Pathfinder. Since such high data rates cannot be continuously saved, we buffer data from both telescopes locally in memory for \\(\\approx 40\\) s, and write to disk upon receipt of a low-latency trigger from the CHIME Fast Radio Burst Instrument (CHIME/FRB). The \\(\\approx200\\) deg\\(^2\\) field of view of the two telescopes allows us to use in-field calibrators to synchronize the two telescopes without needing either separate calibrator observations or an atomic timing standard. In addition to our FRB observations, we analyze bright single pulses from the pulsars B0329+54 and B0355+54 to characterize systematic localization errors. Our results demonstrate the successful implementation of key software, triggering, and calibration challenges for CHIME/FRB Outriggers: cylindrical VLBI outrigger telescopes which, along with the CHIME telescope, will localize thousands of single FRB events to 50 milliarcsecond precision.