Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "Kaeberlin, Matt"
Sort by:
PAUSE: principled feature attribution for unsupervised gene expression analysis
As interest in using unsupervised deep learning models to analyze gene expression data has grown, an increasing number of methods have been developed to make these models more interpretable. These methods can be separated into two groups: post hoc analyses of black box models through feature attribution methods and approaches to build inherently interpretable models through biologically-constrained architectures. We argue that these approaches are not mutually exclusive, but can in fact be usefully combined. We propose PAUSE ( https://github.com/suinleelab/PAUSE ), an unsupervised pathway attribution method that identifies major sources of transcriptomic variation when combined with biologically-constrained neural network models.
Principled Feature Attribution for Unsupervised Gene Expression Analysis
As interest in unsupervised deep learning models for the analysis of gene expression data has grown, an increasing number of methods have been developed to make these deep learning models more interpretable. These methods can be separated into two groups: (1) post hoc analyses of black box models through feature attribution methods and (2) approaches to build inherently interpretable models through biologically-constrained architectures. In this work, we argue that these approaches are not mutually exclusive, but can in fact be usefully combined. We propose a novel unsupervised pathway attribution method, which better identifies major sources of transcriptomic variation than prior methods when combined with biologically-constrained neural network models. We demonstrate how principled feature attributions aid in the analysis of a variety of single cell datasets. Finally, we apply our approach to a large dataset of post-mortem brain samples from patients with Alzheimer's disease, and show that it identifies Mitochondrial Respiratory Complex I as an important factor in this disease. Competing Interest Statement The authors have declared no competing interest.