Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
19 result(s) for "Kalamida, Dimitra"
Sort by:
Autophagosome Proteins LC3A, LC3B and LC3C Have Distinct Subcellular Distribution Kinetics and Expression in Cancer Cell Lines
LC3s (MAP1-LC3A, B and C) are structural proteins of autophagosomal membranes, widely used as biomarkers of autophagy. Whether these three LC3 proteins have a similar biological role in autophagy remains obscure. We examine in parallel the subcellular expression patterns of the three LC3 proteins in a panel of human cancer cell lines, as well as in normal MRC5 fibroblasts and HUVEC, using confocal microscopy and western blot analysis of cell fractions. In the cytoplasm, there was a minimal co-localization between LC3A, B and C staining, suggesting that the relevant autophagosomes are formed by only one out of the three LC3 proteins. LC3A showed a perinuclear and nuclear localization, while LC3B was equally distributed throughout the cytoplasm and localized in the nucleolar regions. LC3C was located in the cytoplasm and strongly in the nuclei (excluding nucleoli), where it extensively co-localized with the LC3A and the Beclin-1 autophagy initiating protein. Beclin 1 is known to contain a nuclear trafficking signal. Blocking nuclear export function by Leptomycin B resulted in nuclear accumulation of all LC3 and Beclin-1 proteins, while Ivermectin that blocks nuclear import showed reduction of accumulation, but not in all cell lines. Since endogenous LC3 proteins are used as major markers of autophagy in clinical studies and cell lines, it is essential to check the specificity of the antibodies used, as the kinetics of these molecules are not identical and may have distinct biological roles. The distinct subcellular expression patterns of LC3s provide a basis for further studies.
Fever-Range Hyperthermia vs. Hypothermia Effect on Cancer Cell Viability, Proliferation and HSP90 Expression
The current study examines the effect of fever-range hyperthermia and mild hypothermia on human cancer cells focusing on cell viability, proliferation and HSP90 expression. A549 and H1299 lung carcinoma, MCF7 breast adenocarcinoma, U87MG and T98G glioblastoma, DU145 and PC3 prostate carcinoma and MRC5 normal fetal lung fibroblasts cell lines were studied. After 3-day exposure to 34°C, 37°C and 40°C, cell viability was determined. Cell proliferation (ki67 index), apoptosis (Caspase 9) and HSP90 expression was studied by confocal microscopy. Viability/proliferation experiments demonstrated that MRC5 fibroblasts were extremely sensitive to hyperthermia, while they were the most resistant to hypothermia. T98G and A549 were thermo-tolerant, the remaining being thermo-sensitive to a varying degree. Nonetheless, as a universal effect, hypothermia reduced viability/proliferation in all cell lines. Hyperthermia sharply induced Caspase 9 in the U87MG most thermo-sensitive cell line. In T98G and A549 thermo-tolerant cell lines, the levels of Caspase 9 declined. Moreover, hyperthermia strongly induced the HSP90 levels in T98G, whilst a sharp decrease was recorded in the thermo-sensitive PC3 and U87MG cell lines. Hyperthermia sensitized thermo-sensitive cancer cell lines to cisplatin and temozolomide, whilst its sensitizing effect was diminished in thermo-tolerant cell lines. The existence of thermo-tolerant and thermo-sensitive cancer cell lines was confirmed, which further encourages research to classify human tumor thermic predilection for patient stratification in clinical trials. Of interest, mild hypothermia had a universal suppressing effect on cancer cell proliferation, further supporting the radio-sensitization hypothesis through reduction of oxygen and metabolic demands.
Metabolic cooperation between co-cultured lung cancer cells and lung fibroblasts
Cooperation of cancer cells with stromal cells, such as cancer-associated fibroblasts (CAFs), has been revealed as a mechanism sustaining cancer cell survival and growth. In the current study, we focus on the metabolic interactions of MRC5 lung fibroblasts with lung cancer cells (A549 and H1299) using co-culture experiments and studying changes of the metabolic protein expression profile and of their growth and migration abilities. Using western blotting, confocal microscopy and RT-PCR, we observed that in co-cultures MRC5 respond by upregulating pyruvate dehydrogenase (PDH) and the monocarboxylate transporter MCT1. In contrast, cancer cells increase the expression of glucose transporters (GLUT1), LDH5, PDH kinase and the levels of phosphorylated/inactivated pPDH. H1299 cells growing in the same culture medium with fibroblasts exhibit a ‘metastasis-like’ phenomenon by forming nests within the fibroblast area. LDH5 and pPDH were drastically upregulated in these nests. The growth rate of both MRC5 and cancer cells increased in co-cultures. Suppression of LDHA or PDK1 in cancer cells abrogates the stimulatory signal from cancer cells to fibroblasts. Incubation of MRC5 fibroblasts with lactate resulted in an increase of LDHB and of PDH expression. Silencing of PDH gene in fibroblasts, or silencing of PDK1 or LDHA gene in tumor cells, impedes cancer cell’s migration ability. Overall, a metabolic cooperation between lung cancer cells and fibroblasts has been confirmed in the context of direct Warburg effect, thus the fibroblasts reinforce aerobic metabolism to support the intensified anaerobic glycolytic pathways exploited by cancer cells.
Apalutamide radio-sensitisation of prostate cancer
Introduction The combination of radiotherapy with bicalutamide is the standard treatment of prostate cancer patients with high-risk or locally advanced disease. Whether new-generation anti-androgens, like apalutamide, can improve the radio-curability of these patients is an emerging challenge. Materials and methods We comparatively examined the radio-sensitising activity of apalutamide and bicalutamide in hormone-sensitive (22Rv1) and hormone-resistant (PC3, DU145) prostate cancer cell lines. Experiments with xenografts were performed for the 22Rv1 cell line. Results Radiation dose–response viability and clonogenic assays showed that apalutamide had a stronger radio-sensitising activity for all three cell lines. Confocal imaging for γΗ2Αx showed similar DNA double-strand break repair kinetics for apalutamide and bicalutamide. No difference was noted in the apoptotic pathway. A striking cell death pattern involving nuclear karyorrhexis and cell pyknosis in the G1/S phase was exclusively noted when radiation was combined with apalutamide. In vivo experiments in SCID and R2G2 mice showed significantly higher efficacy of radiotherapy (2 and 4 Gy) when combined with apalutamide, resulting in extensive xenograft necrosis. Conclusions In vitro and in vivo experiments support the superiority of apalutamide over bicalutamide in combination with radiotherapy in prostate cancer. Clinical studies are encouraged to show whether replacement of bicalutamide with apalutamide may improve the curability rates.
Thermogenic protein UCP1 and UCP3 expression in non- small cell lung cancer: relation with glycolysis and anaerobic metabolism
Uncoupling protein 1 (UCP1) is a proton transporter/channel residing on the inner mitochondrial membrane and is involved in cellular heat production. Using immunohistochemistry, we investigated the expression of UCP1 and UCP3 in a series of 98 patients with non-small cell lung cancer (NSCLC) treated with surgery. Expression patterns were correlated with histopathological variables, prognosis, and the expression of enzymes/proteins related to cell metabolism. Bronchial epithelium did not express UCPl or UCP3, while alveolar cells strongly expressed UCP1. In tumors, strong expression of UCP1 and UCP3 was recorded in 43/98 (43.8%) and 27/98 (27.6%) cases, respectively. UCP1 was significantly associated with squamous cell histology (P = 0.05), whilst UCP3 was more frequently overexpressed in large cell carcinomas (P = 0.08), and was inversely related to necrosis (P - 0.009). In linear regression analysis, UCP1 was directly related to markers of glycolysis [hexokinase (HXKII) and phosphofructokinase (PFK1)] and anaerobic glucose metabolism [pyruvate dehydrogenase kinase (PDK1) and lactate dehydrogenase (LDH5)]. UCP3 was directly linked with a glucose transporter (GLUT2), monocarboxylate transporter (MCT2), glycolysis markers (PFK1 and aldolase), and with the phosphorylation of pyruvate dehydrogenase (pPDH). Kaplan-Meier survival analysis showed that UCP3 was significantly related to poor prognosis in squarnous cell carcinomas (P = 0.04). UCP 1 and UCP3 are overexpressed in a large subgroup of non-small cell lung tumors and their expression coincides with increased glucose absorption, intensified glycolysis, and anaerobic glucose usage. Whether UCPs are targets for therapeutic interventions in lung cancer is a hypothesis that demands further investigation.
Liver glycogen phosphorylase is upregulated in glioblastoma and provides a metabolic vulnerability to high dose radiation
Channelling of glucose via glycogen, known as the glycogen shunt, may play an important role in the metabolism of brain tumours, especially in hypoxic conditions. We aimed to dissect the role of glycogen degradation in glioblastoma (GBM) response to ionising radiation (IR). Knockdown of the glycogen phosphorylase liver isoform (PYGL), but not the brain isoform (PYGB), decreased clonogenic growth and survival of GBM cell lines and sensitised them to IR doses of 10–12 Gy. Two to five days after IR exposure of PYGL knockdown GBM cells, mitotic catastrophy and a giant multinucleated cell morphology with senescence-like phenotype developed. The basal levels of the lysosomal enzyme alpha-acid glucosidase (GAA), essential for autolysosomal glycogen degradation, and the lipidated forms of gamma-aminobutyric acid receptor-associated protein-like (GABARAPL1 and GABARAPL2) increased in shPYGL U87MG cells, suggesting a compensatory mechanism of glycogen degradation. In response to IR, dysregulation of autophagy was shown by accumulation of the p62 and the lipidated form of GABARAPL1 and GABARAPL2 in shPYGL U87MG cells. IR increased the mitochondrial mass and the colocalisation of mitochondria with lysosomes in shPYGL cells, thereby indicating reduced mitophagy. These changes coincided with increased phosphorylation of AMP-activated protein kinase and acetyl-CoA carboxylase 2, slower ATP generation in response to glucose loading and progressive loss of oxidative phosphorylation. The resulting metabolic deficiencies affected the availability of ATP required for mitosis, resulting in the mitotic catastrophy observed in shPYGL cells following IR. PYGL mRNA and protein levels were higher in human GBM than in normal human brain tissues and high PYGL mRNA expression in GBM correlated with poor patient survival. In conclusion, we show a major new role for glycogen metabolism in GBM cancer. Inhibition of glycogen degradation sensitises GBM cells to high-dose IR indicating that PYGL is a potential novel target for the treatment of GBMs.
Autophagic flux response and glioblastoma sensitivity to radiation
Glioblastoma is the most common primary brain tumor in adults and one of the most lethal human tumors. It constitutes a unique non-metastasizing human tumor model with high resistance to radiotherapy and chemotherapy. The current study investigates the association between autophagic flux and glioblastoma cell resistance. The expression kinetics of autophagy- and lysosome-related proteins following exposure of two glioblastoma cell lines (T98 and U87) to clinically relevant radiation doses was examined. Then, the response of cells resistant to radiotherapy and chemotherapy was investigated after silencing of , , and genes and . Following irradiation with 4 Gy, the relatively radioresistant T98 cells exhibited enhanced autophagic flux. The more radiosensitive U87 cell line suffered a blockage of autophagic flux. Silencing of , , and genes , significantly sensitized cells to radiotherapy and temozolomide (U87: < 0.01 and < 0.05, respectively; T98: < 0.01 and < 0.01, respectively). Silencing of the LC3A gene sensitized mouse xenografts to radiation. Autophagy in cancer cells may be a key factor of radio-resistance and chemo-resistance in glioblastoma cells. Blocking autophagy may improve the efficacy of radiochemotherapy for glioblastoma patients.
Important Role of Autophagy in Endothelial Cell Response to Ionizing Radiation
Vasculature damage is an important contributor to the side-effects of radiotherapy. The aim of this study is to provide insights into the radiobiology of the autophagic response of endothelial cells. Human umbilical vascular endothelial cells (HUVEC) were exposed to 2 Gy of ionizing radiation (IR) and studied using confocal microscopy and western blot analysis, at 4 and 8 days post-irradiation. The role of autophagy flux in HUVEC radio-sensitivity was also examined. IR-induced accumulation of LC3A(+), LC3B(+) and p62 cytoplasmic vacuoles, while in double immunostaining with lysosomal markers (LAMP2a and CathepsinD) repression of the autophagolysosomal flux was evident. Autophagy-related proteins (ATF4, HIF1α., HIF2α, Beclin1) were, however, induced excluding an eventual repressive effect of radiation on autophagy initiating protein expression. Exposure of HUVEC to SMER28, an mTOR-independent inducer of autophagy, enhanced proLC3 and LC3A, B-I protein expression and accelerated the autophagic flux. Pre-treatment of HUVEC with SMER28 protected against the blockage of autophagic flux induced by IR and conferred radio-resistance. Suppression of LC3A/LC3B proteins with siRNAs resulted in radio-sensitization. The current data provide a rationale for the development of novel radioprotection policies targeting the autophagic pathway.
Inhibition of IKK-NFκB pathway sensitizes lung cancer cell lines to radiation
Objective: Cancer cell radioresistance is a stumbling block in radiation therapy. The activity in the nuclear factor kappa B (NFκ B) pathway correlates with anti-apoptotic mechanisms and increased radioresistance. The IKK complex plays a major role in NFκB activation upon numerous signals. In this study, we examined the interaction between ionizing radiation (IR) and different members of the IKK-NFκB pathway, as well as upstream activators, RAF1, ERK, and AKT1. Methods: The effect of 4 Gy of IR on the expression of the RAF1-ERK-IKK-NFκB pathway was examined in A549 and H1299 lung cancer cell lines using Western blot analysis and confocal microscopy. We examined changes in radiation sensitivity using gene silencing or pharmacological inhibitors of ERK and IKKβ. Results: IKKα, IKKγ, and IκBα increased upon exposure to IR, thereby affecting nuclear levels of NFκB (phospho-p65). ERK inhibition or siRNA-mediated down-regulation of RAF1 suppressed the post-irradiation survival of the examined lung cancer cell lines. A similar effect was detected on survival upon silencing IKKα/IKKγ or inhibiting IKKβ. Conclusions: Exposure of lung cancer cells to IR results in NFκ B activation via IKK. The genetic or pharmacological blockage of the RAF 1-ERK-IKK-NFκB pathway sensitizes cells to therapeutic doses of radiation. Therefore, the IKK pathway is a promising target for therapeutic intervention in combination with radiotherapy.