Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
51 result(s) for "Kalbac, Martin"
Sort by:
Mastering the Wrinkling of Self-supported Graphene
We present an approach that allows for the preparation of well-defined large arrays of graphene wrinkles with predictable geometry. Chemical vapor deposition grown graphene transferred onto hexagonal pillar arrays of SiO 2 with sufficiently small interpillar distance forms a complex network of two main types of wrinkle arrangements. The first type is composed of arrays of aligned equidistantly separated parallel wrinkles propagating over large distances, and originates from line interfaces in the graphene, such as thin, long wrinkles and graphene grain boundaries. The second type of wrinkle arrangement is composed of non-aligned short wrinkles, formed in areas without line interfaces. Besides the presented hybrid graphene topography with distinct wrinkle geometries induced by the pre-patterned substrate, the graphene layers are suspended and self-supporting, exhibiting large surface area and negligible doping effects from the substrate. All these properties make this wrinkled graphene a promising candidate for a material with enhanced chemical reactivity useful in nanoelectronic applications.
Superlattice in collapsed graphene wrinkles
Topographic corrugations, such as wrinkles, are known to introduce diverse physical phenomena that can significantly modify the electrical, optical and chemical properties of two-dimensional materials. This range of assets can be expanded even further when the crystal lattices of the walls of the wrinkle are aligned and form a superlattice, thereby creating a high aspect ratio analogue of a twisted bilayer or multilayer – the so-called twisted wrinkle. Here we present an experimental proof that such twisted wrinkles exist in graphene monolayers on the scale of several micrometres. Combining atomic force microscopy and Raman spectral mapping using a wide range of visible excitation energies, we show that the wrinkles are extremely narrow and their Raman spectra exhibit all the characteristic features of twisted bilayer or multilayer graphene. In light of a recent breakthrough – the superconductivity of a magic-angle graphene bilayer, the collapsed wrinkles represent naturally occurring systems with tuneable collective regimes.
Tunable strain and bandgap in subcritical-sized MoS2 nanobubbles
Nanobubbles naturally formed at the interface between 2D materials and their substrate are known to act as exciton recombination centers because of the reduced bandgap due to local strain, which in turn scales with the aspect ratio of the bubbles. The common understanding suggests that the aspect ratio is a universal constant independent of the bubble size. Here, by combining scanning tunneling microscopy and molecular dynamics, we show that the universal aspect ratio breaks down in MoS 2 nanobubbles below a critical radius (≈10 nm), where the aspect ratio increases with increasing size. Accordingly, additional atomic-level analyses indicate that the strain increases from 3% to 6% in the sub-critical size range. Using scanning tunneling spectroscopy, we demonstrate that the bandgap decreases as a function of the size. Thus, tunable quantum emitters can be obtained in 2D semiconductors by controlling the radius of the nanobubbles.
Electrochromic 2,5‐Dihydroxyterephthalic Acid Linker in Metal−Organic Frameworks
Metal–organic frameworks (MOFs) are diverse in color owing to a large variety of molecular structures. Herein, electrochromism of M‐MOF‐74 (M = Mg, Mn, Co or Zn) is reported, which is a honeycomb nano‐framework in which hexagonally packed 1D arrays of metal cations are coordinated with 2,5‐dihydroxyterephthalic (dhtp) acid linker. Raman spectroscopy upon electrochemical doping combined with density functional theory calculations reveals redox reactions of the linker while the metal cations stay divalent as probed by X‐ray photoemission spectroscopy (XPS). Excellent adhesion of the MOFs to glass allows the synthesis of quality thin films to be implemented into electrochromic devices that exhibit promising color contrast and durability. A family of the metal–organic framework (MOF), M‐MOF‐74 (M = Mg, Mn, Co, or Zn), exhibits electrochromism with promising color contrast and durability, as a result of oxidation and reduction of the organic ligand.
Proinflammatory Effect of Carbon-Based Nanomaterials: In Vitro Study on Stimulation of Inflammasome NLRP3 via Destabilisation of Lysosomes
Carbon-based nanomaterials (C-BNM) have recently attracted an increased attention as the materials with potential applications in industry and medicine. Bioresistance and proinflammatory potential of C-BNM is the main obstacle for their medicinal application which was documented in vivo and in vitro. However, there are still limited data especially on graphene derivatives such as graphene platelets (GP). In this work, we compared multi-walled carbon nanotubes (MWCNT) and two different types of pristine GP in their potential to activate inflammasome NLRP3 (The nod-like receptor family pyrin domain containing 3) in vitro. Our study is focused on exposure of THP-1/THP1-null cells and peripheral blood monocytes to C-BNM as representative models of canonical and alternative pathways, respectively. Although all nanomaterials were extensively accumulated in the cytoplasm, increasing doses of all C-BNM did not lead to cell death. We observed direct activation of NLRP3 via destabilization of lysosomes and release of cathepsin B into cytoplasm only in the case of MWCNTs. Direct activation of NLRP3 by both GP was statistically insignificant but could be induced by synergic action with muramyl dipeptide (MDP), as a representative molecule of the family of pathogen-associated molecular patterns (PAMPs). This study demonstrates a possible proinflammatory potential of GP and MWCNT acting through NLRP3 activation.
Electrical Contact Resistance of Large-Area Graphene on Pre-Patterned Cu and Au Electrodes
Contact resistance between electrically connected parts of electronic elements can negatively affect their resulting properties and parameters. The contact resistance is influenced by the physicochemical properties of the connected elements and, in most cases, the lowest possible value is required. The issue of contact resistance is also addressed in connection with the increasingly frequently used carbon allotropes. This work aimed to determine the factors that influence contact resistance between graphene prepared by chemical vapour deposition and pre-patterned Cu and Au electrodes onto which graphene is subsequently transferred. It was found that electrode surface treatment methods affect the resistance between Cu and graphene, where contact resistance varied greatly, with an average of 1.25 ± 1.54 kΩ, whereas for the Au electrodes, the deposition techniques did not influence the resulting contact resistance, which decreased by almost two orders of magnitude compared with the Cu electrodes, to 0.03 ± 0.01 kΩ.
Reversible Lectin Binding to Glycan-Functionalized Graphene
The monolayer character of two-dimensional materials predestines them for application as active layers of sensors. However, their inherent high sensitivity is always accompanied by a low selectivity. Chemical functionalization of two-dimensional materials has emerged as a promising way to overcome the selectivity issues. Here, we demonstrate efficient graphene functionalization with carbohydrate ligands—chitooligomers, which bind proteins of the lectin family with high selectivity. Successful grafting of a chitooligomer library was thoroughly characterized, and glycan binding to wheat germ agglutinin was studied by a series of methods. The results demonstrate that the protein quaternary structure remains intact after binding to the functionalized graphene, and that the lectin can be liberated from the surface by the addition of a binding competitor. The chemoenzymatic assay with a horseradish peroxidase conjugate also confirmed the intact catalytic properties of the enzyme. The present approach thus paves the way towards graphene-based sensors for carbohydrate–lectin binding.
Introducing Well-Defined Nanowrinkles in CVD Grown Graphene
The control of graphene’s topography at the nanoscale level opens up the possibility to greatly improve the surface functionalization, change the doping level or create nanoscale reservoirs. However, the ability to control the modification of the topography of graphene on a wafer scale is still rather challenging. Here we present an approach to create well-defined nanowrinkles on a wafer scale using nitrocellulose as the polymer to transfer chemical vapor deposition grown graphene from the copper foil to a substrate. During the transfer process, the complex tertiary nitrocellulose structure is imprinted into the graphene area layer. When the graphene layer is put onto a substrate this will result in a well-defined nanowrinkle pattern, which can be subsequently further processed. Using atomic force and Raman microscopy, we characterized the generated nanowrinkles in graphene.
The Effects of Ultrasound Treatment of Graphite on the Reversibility of the (De)Intercalation of an Anion from Aqueous Electrolyte Solution
Low cycling stability is one of the most crucial issues in rechargeable batteries. Herein, we study the effects of a simple ultrasound treatment of graphite for the reversible (de)intercalation of a ClO4− anion from a 2.4 M Al(ClO4)3 aqueous solution. We demonstrate that the ultrasound-treated graphite offers the improved reversibility of the ClO4− anion (de)intercalation compared with the untreated samples. The ex situ and in situ Raman spectroelectrochemistry and X-ray diffraction analysis of the ultrasound-treated materials shows no change in the interlayer spacing, a mild increase in the stacking order, and a large increase in the amount of defects in the lattice accompanied by a decrease in the lateral crystallite size. The smaller flakes of the ultrasonicated natural graphite facilitate the improved reversibility of the ClO4− anion electrochemical (de)intercalation and a more stable electrochemical performance with a cycle life of over 300 cycles.
Thermal Traits of MNPs under High-Frequency Magnetic Fields: Disentangling the Effect of Size and Coating
We investigated the heating abilities of magnetic nanoparticles (MNPs) in a high-frequency magnetic field (MF) as a function of surface coating and size. The cobalt ferrite MNPs were obtained by a hydrothermal method in a water–oleic acid–ethanol system, yielding MNPs with mean diameter of about 5 nm, functionalized with the oleic acid. By applying another cycle of hydrothermal synthesis, we obtained MNPs with about one nm larger diameter. In the next step, the oleic acid was exchanged for 11-maleimidoundecanoic acid or 11-(furfurylureido)undecanoic acid. For the heating experiments, all samples were dispersed in the same solvent (dichloroethane) in the same concentration and the heating performance was studied in a broad interval of MF frequencies (346–782 kHz). The obtained results enabled us to disentangle the impact of the hydrodynamic, structural, and magnetic parameters on the overall heating capabilities. We also demonstrated that the specific power absorption does not show a monotonous trend within the series in the investigated interval of temperatures, pointing to temperature-dependent competition of the Brownian and Néel contributions in heat release.