Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
27
result(s) for
"Kalivitis, Nikos"
Sort by:
Biomass-burning impact on CCN number, hygroscopicity and cloud formation during summertime in the eastern Mediterranean
by
Mihalopoulos, Nikolaos
,
Nenes, Athanasios
,
Bezantakos, Spiros
in
Aerosol concentrations
,
Aerosols
,
Air masses
2016
This study investigates the concentration, cloud condensation nuclei (CCN) activity and hygroscopic properties of particles influenced by biomass burning in the eastern Mediterranean and their impacts on cloud droplet formation. Air masses sampled were subject to a range of atmospheric processing (several hours up to 3 days). Values of the hygroscopicity parameter, κ, were derived from CCN measurements and a Hygroscopic Tandem Differential Mobility Analyzer (HTDMA). An Aerosol Chemical Speciation Monitor (ACSM) was also used to determine the chemical composition and mass concentration of non-refractory components of the submicron aerosol fraction. During fire events, the increased organic content (and lower inorganic fraction) of the aerosol decreases the values of κ, for all particle sizes. Particle sizes smaller than 80 nm exhibited considerable chemical dispersion (where hygroscopicity varied up to 100 % for particles of same size); larger particles, however, exhibited considerably less dispersion owing to the effects of condensational growth and cloud processing. ACSM measurements indicate that the bulk composition reflects the hygroscopicity and chemical nature of the largest particles (having a diameter of ∼ 100 nm at dry conditions) sampled. Based on positive matrix factorization (PMF) analysis of the organic ACSM spectra, CCN concentrations follow a similar trend as the biomass-burning organic aerosol (BBOA) component, with the former being enhanced between 65 and 150 % (for supersaturations ranging between 0.2 and 0.7 %) with the arrival of the smoke plumes. Using multilinear regression of the PMF factors (BBOA, OOA-BB and OOA) and the observed hygroscopicity parameter, the inferred hygroscopicity of the oxygenated organic aerosol components is determined. We find that the transformation of freshly emitted biomass burning (BBOA) to more oxidized organic aerosol (OOA-BB) can result in a 2-fold increase of the inferred organic hygroscopicity; about 10 % of the total aerosol hygroscopicity is related to the two biomass-burning components (BBOA and OOA-BB), which in turn contribute almost 35 % to the fine-particle organic water of the aerosol. Observation-derived calculations of the cloud droplet concentrations that develop for typical boundary layer cloud conditions suggest that biomass burning increases droplet number, on average by 8.5 %. The strongly sublinear response of clouds to biomass-burning (BB) influences is a result of strong competition of CCN for water vapor, which results in very low maximum supersaturation (0.08 % on average). Attributing droplet number variations to the total aerosol number and the chemical composition variations shows that the importance of chemical composition increases with distance, contributing up to 25 % of the total droplet variability. Therefore, although BB may strongly elevate CCN numbers, the impact on droplet number is limited by water vapor availability and depends on the aerosol particle concentration levels associated with the background.
Journal Article
Regional new particle formation as modulators of cloud condensation nuclei and cloud droplet number in the eastern Mediterranean
by
Mihalopoulos, Nikolaos
,
Nenes, Athanasios
,
Stavroulas, Iasonas
in
Aerosols
,
Analysis
,
Atmospheric physics
2019
A significant fraction of atmospheric particles that serve as cloud
condensation nuclei (CCN) are thought to originate from the condensational
growth of new particle formation (NPF) from the gas phase. Here, 7 years of
continuous aerosol and meteorological measurements (June 2008 to May 2015)
at a remote background site of the eastern Mediterranean were recorded and
analyzed to assess the impact of NPF (of 162 episodes identified) on CCN and
cloud droplet number concentration (CDNC) formation in the region. A new
metric is introduced to quantitatively determine the initiation and duration
of the influence of NPF on the CCN spectrum. NPF days were found to increase
CCN concentrations (from 0.10 % to 1.00 % supersaturation) between 29 %
and 77 %. Enhanced CCN concentrations from NPF are mostly observed, as
expected, under low preexisting particle concentrations and occur in the
afternoon, relatively later in the winter and autumn than in the summer.
Potential impacts of NPF on cloud formation were quantified by introducing
the observed aerosol size distributions and chemical composition into an
established cloud droplet parameterization. We find that the
supersaturations that develop are very low (ranging between 0.03 % and
0.27 %) for typical boundary layer dynamics (σw
∼0.3 m s−1) and NPF is found to enhance CDNC by a modest
13 %. This considerable contrast between CCN and CDNC response is in part
from the different supersaturation levels considered, but also because
supersaturation drops from increasing CCN because of water vapor competition
effects during the process of droplet formation. The low cloud
supersaturation further delays the appearance of NPF impacts on CDNC to
clouds formed in the late evening and nighttime – which has important
implications for the extent and types of indirect effects induced by NPF
events. An analysis based on CCN concentrations using prescribed
supersaturation can provide very different, even misleading, conclusions and
should therefore be avoided. The proposed approach here offers a simple, yet
highly effective way for a more realistic impact assessment of NPF events on
cloud formation.
Journal Article
Association of environmental, demographic and clinical parameters with physical activity in children with asthma
2025
Personal characteristics, unfavorable weather conditions and air pollution have been linked with reduced physical activity in children. However, among children with asthma the effects of these parameters remain unclear. This study objectively quantified the physical activity of children with asthma and evaluated its association with environmental, personal, and clinical parameters. Participants of the prospective LIFE-MEDEA asthma study wore the EMRACE™ smartwatch daily for continuous monitoring of physical activity and acquisition of global positioning system data. Daily physical activity, personal and clinical data were combined with daily temperature, precipitation, and air pollution levels in adjusted mixed effect regression models to examine the relationship between physical activity and the examined parameters. For a follow-up period of 4 months, 186 children with asthma demonstrated a decrease of 796 steps (95% CI: -1080, -512) on days with precipitation compared to non-precipitation days and a decrease of 96 steps (95% CI: -182, -9) for every 10 µg/m
3
increase in PM
10
. The relationship between temperature and daily steps was characterized by an inverted U-shape. There was also evidence that gender and age-adjusted BMI z-score were negatively associated with daily steps. These results can further inform the design of physical activity interventions targeting children with asthma.
Journal Article
A global view on the effect of water uptake on aerosol particle light scattering
2019
A reference dataset of multi-wavelength particle light scattering and hemispheric backscattering coefficients for different relative humidities (RH) between RH = 30 and 95% and wavelengths between λ = 450 nm and 700 nm is described in this work. Tandem-humidified nephelometer measurements from 26 ground-based sites around the globe, covering multiple aerosol types, have been re-analysed and harmonized into a single dataset. The dataset includes multi-annual measurements from long-term monitoring sites as well as short-term field campaign data. The result is a unique collection of RH-dependent aerosol light scattering properties, presented as a function of size cut. This dataset is important for climate and atmospheric model-measurement inter-comparisons, as a means to improve model performance, and may be useful for satellite and remote sensing evaluation using surface-based, in-situ measurements.Design Type(s)spectral data collection and processing objective • data integration objective • time series designMeasurement Type(s)light scatteringTechnology Type(s)NephelometryFactor Type(s)geographic location • instrument • Environment • temporal_intervalSample Characteristic(s)United States of America • climate system • Canada • The Netherlands • Greece • Germany • Portuguese Republic • South Korea • China • United Kingdom • Finland • Switzerland • Maldives Archipelago • Brazil • Republic of Ireland • Niger • India • Kingdom of Spain • Kingdom of NorwayMachine-accessible metadata file describing the reported data (ISA-Tab format)
Journal Article
Observations of Gas-Phase Alkylamines at a Coastal Site in the East Mediterranean Atmosphere
by
Tzitzikalaki, Evangelia
,
Kanakidou, Maria
,
Kalivitis, Nikos
in
Aerosols
,
Air sampling
,
Alkylamines
2021
Atmospheric amines are ubiquitous compounds in the atmosphere, having both natural and anthropogenic origin. Recently, they have been identified as important contributors to new particle formation in the atmosphere, but observations of their atmospheric concentrations are scarce. In the present study we introduce the first systematic long-term observations of gas-phase amines measurements in the East Mediterranean atmosphere. Air samples were collected at the Finokalia monitoring station of the University of Crete during a 3.5-year period from January 2013 to July 2016, and analyzed after extraction using a high-performance liquid chromatography triple quadrupole mass spectrometer. The detected alkylamines were the sum of dimethylamine and ethylamine (DMA+EA), trimethylamine (TMA), diethylamine (DEA) and triethylamine (TEA). DMA+EA and TMA were the most abundant alkylamines, with concentrations spanning from the detection limit to 78.0 and 69.8 pptv, and average concentrations of 7.8 ± 12.1 and 7.5 ± 12.4 pptv, respectively. Amines showed pronounced seasonal variability with DMA+EA and TMA concentrations being higher in winter. Statistical analysis of the observations showed different sources for each of the studied amines, except for DMA+ΕA and DEA that appear to have common sources in the region. This analysis points to a marine source of TMA and animal husbandry in the area as a potential source of TEA. None of the alkylamines is correlated with other anthropogenic sources. Furthermore, no clear association was found between the seasonality of NPF events and alkylamines concentrations, while a clear correlation was detected between the seasonality of nucleation mode particle (dp < 25 nm) number concentrations and alkylamine concentrations, indicating that amines may contribute to nucleation mode particles’ production.
Journal Article
Seasonal and Diurnal Variability of Monoterpenes in the Eastern Mediterranean Atmosphere
by
Mihalopoulos, Nikos
,
Tzitzikalaki, Evangelia
,
Kanakidou, Maria
in
Adsorption
,
Aerosols
,
Air quality
2023
Monoterpenes significantly affect air quality and climate as they participate in tropospheric ozone formation, new particle formation (NPF), and growth through their oxidation products. Vegetation is responsible for most biogenic volatile organic compound (BVOC) emissions released into the atmosphere, yet the contribution of shrub and regional transport to the ambient monoterpene mixing ratios is not sufficiently documented. In this study, we present one-year systematic observations of monoterpenes in the Eastern Mediterranean at a remote coastal site, affected mainly by the typical phrygana vegetation found on the Island of Crete in Greece. A total of 345 air samples were collected in absorption tubes and analyzed by a GC-FID system during three intensive campaigns (in spring 2014, summer 2014, and spring 2015) in addition to the systematic collection of one diurnal cycle per week from October 2014 to April 2015. Limonene, α-pinene and 1,8-cineol have been detected. The mixing ratios of α-pinene during spring and summer show a cycle that is typical for biogenic compounds, with high levels during the night and early morning, followed by an abrupt decrease around midday, which results from the strong photochemical depletion of this compound. Limonene was the most abundant monoterpene, with average mixing ratios of 36.3 ± 66 ppt. The highest mixing ratios were observed during autumn and spring, with a maximum mixing ratio in the early afternoon. The spring and autumn maxima could be attributed to the seasonal behavior of vegetation growth at Finokalia. The green period starts in late autumn when phrygana vegetation grows because of the rainfall; the temperature is still high at this time, as Finokalia is located in the southeast part of Europe. Statistical analyses of the observations showed that limonene and α-pinene have different sources, and none of the studied monoterpenes is correlated with the anthropogenic sources. Finally, the seasonality of the new particle formation (NPF) events and monoterpene mixing ratios show similarities, with a maximum occurring in spring, indicating that monoterpenes may contribute to the production of new particles.
Journal Article
From Tropospheric Folding to Khamsin and Foehn Winds: How Atmospheric Dynamics Advanced a Record-Breaking Dust Episode in Crete
by
Mihalopoulos, Nikos
,
Binietoglou, Ioannis
,
Kouvarakis, Giorgos
in
Advection
,
Aerodynamics
,
Aerosols
2018
A record-breaking dust episode took place in Crete on 22 March 2018. The event was characterized by surface concentrations exceeding 1 mg m−3 for a period of 4–7 h, reaching record values higher than 6 mg m−3 at the background station of Finokalia. We present here a detailed analysis of the atmospheric dynamical processes during this period, to identify the main reasons for such extreme dust advection over Crete. At the synoptic scale, the weakening of the polar vortex and the meridional transport of polar air masses at upper tropospheric layers resulted in a strong jet streak over north Africa and Central Mediterranean and corresponding tropospheric folding that brought cold stratospheric air in mid and upper troposphere. Cyclogenesis occurred at the Gulf of Sirte in Libya, resulting in strong winds over the north-east parts of Libya, enhancing particle emissions. The dust plume traveled at low altitude (0.5–3 km) along the warm conveyor belt preceding the depression cold front. This type of dusty southerly wind is commonly known as “Khamsin”. As the flow approached Crete, Foehn winds at the lee side of the island favored the downward mixing of dust towards the surface, resulting in local maxima of PM10 in Heraklion and Finokalia. The analysis is based on the combination of high-resolution WRF-Chem simulations reaching up to 1 × 1 km grid space over Crete, ground-based and satellite remote sensing of the dust plumes (PollyXT LiDAR, MSG-SEVIRI, MODIS) and detailed surface aerosol in situ measurements at urban (Heraklion, Chania, Greece) and background (Finokalia) stations in Crete.
Journal Article
Regional New Particle Formation over the Eastern Mediterranean and Middle East
by
Mihalopoulos, Nikolaos
,
Hussein, Tareq
,
Stavroulas, Iasonas
in
Aerosols
,
Air masses
,
Charged particles
2021
Atmospheric new particle formation (NPF) events taking place over large distances between locations, featuring similar characteristics, have been the focus of studies during the last decade. The exact mechanism which triggers NPF still remains indefinable, so are the circumstances under which simultaneous occurrence of such events take place in different environments, let alone in environments which are parted by over 1200 km. In this study, concurrent number size distribution measurements were conducted in the urban environments of Athens (Greece) and Amman (Jordan) as well as the regional background site of Finokalia, Crete, all located within a distance of almost 1300 km for a 6-month period (February–July 2017). During the study period Athens and Finokalia had similar occurrence of NPF (around 20%), while the occurrence in Amman was double. When focusing on the dynamic characteristics at each site, it occurs that formation and growth rates at Amman are similar to those at Finokalia, while lower values in Athens can be ascribed to a higher pre-existing particle number at this urban site. By comparing common NPF events there are 5 concomitant days between all three sites, highly related to air masses origin. Additionally, for another 19 days NPF takes place simultaneously between Finokalia and Amman, which also share common meteorological characteristics, adding to a total of 60% out of 41 NPF events observed at Finokalia, also simultaneously occurring in Amman.
Journal Article
Assessment of the COVID-19 Lockdown Effects on Spectral Aerosol Scattering and Absorption Properties in Athens, Greece
by
Mihalopoulos, Nikolaos
,
Liakakou, Eleni
,
Stavroulas, Iasonas
in
Absorption
,
Aerosol absorption
,
Aerosol concentrations
2021
COVID-19 is evolving into one of the worst pandemics in recent history, claiming a death toll of over 1.5 million as of December 2020. In an attempt to limit the expansion of the pandemic in its initial phase, nearly all countries imposed restriction measures, which resulted in an unprecedented reduction of air pollution. This study aims to assess the impact of the lockdown effects due to COVID-19 on in situ measured aerosol properties, namely spectral-scattering (bsca) and absorption (babs) coefficients, black carbon (BC) concentrations, single-scattering albedo (SSA), scattering and absorption Ångström exponents (SAE, AAE) in Athens, Greece. Moreover, a comparison is performed with the regional background site of Finokalia, Crete, for a better assessment of the urban impact on observed differences. The study examines pre-lockdown (1–22 March 2020), lockdown (23 March–3 May 2020) and post-lockdown (4–31 May 2020) periods, while the aerosol properties are also compared with a 3–4 year preceding period (2016/2017–2019). Comparison of meteorological parameters in Athens, between the lockdown period and respective days in previous years, showed only marginal variation, which is not deemed sufficient in order to justify the notable changes in aerosol concentrations and optical properties. The largest reduction during the lockdown period was observed for babs compared to the pre-lockdown (−39%) and to the same period in previous years (−36%). This was intensified during the morning traffic hours (−60%), reflecting the large decrease in vehicular emissions. Furthermore, AAE increased during the lockdown period due to reduced emissions from fossil-fuel combustion, while a smaller (−21%) decrease was observed for bsca along with slight increases (6%) in SAE and SSA values, indicating that scattering aerosol properties were less affected by the decrease in vehicular emissions, as they are more dependent on regional sources and atmospheric processing. Nighttime BC emissions related to residential wood-burning were slightly increased during the lockdown period, with respect to previous-year means. On the contrary, aerosol and pollution changes during the lockdown period at Finokalia were low and highly sensitive to natural sources and processes.
Journal Article
The Atmospheric Aerosol over Western Greece-Six Years of Aerosol Observations at the Navarino Environmental Observatory
by
Freud, Eyal
,
Tunved, Peter
,
Maneas, Giorgos
in
aerosol
,
Aerosol observations
,
Aerosol properties
2021
The Eastern Mediterranean is a highly populated area with air quality problems. It is also where climate change is already noticed by higher temperatures and s changing precipitation pattern. The anthropogenic aerosol affects health and changing concentrations and properties of the atmospheric aerosol affect radiation balance and clouds. Continuous long-term observations are essential in assessing the influence of anthropogenic aerosols on climate and health. We present six years of observations from Navarino Environmental Observatory (NEO), a new station located at the south west tip of Peloponnese, Greece. The two sites at NEO, were evaluated to show the influence of the local meteorology and to assess the general background aerosol possible. It was found that the background aerosol was originated from aged European aerosols and was strongly influenced by biomass burning, fossil fuel combustion, and industry. When subsiding into the boundary layer, local sources contributed in the air masses moving south. Mesoscale meteorology determined the diurnal variation of aerosol properties such as mass and number by means of typical sea breeze circulation, giving rise to pronounced morning and evening peaks in pollutant levels. While synoptic scale meteorology, mainly large-scale air mass transport and precipitation, strongly influenced the seasonality of the aerosol properties.
Journal Article