Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
4 result(s) for "Kandasamy, Selvaraju"
Sort by:
APOE expression and secretion are modulated by mitochondrial dysfunction
Mitochondria influence cellular function through both cell-autonomous and non-cell autonomous mechanisms, such as production of paracrine and endocrine factors. Here, we demonstrate that mitochondrial regulation of the secretome is more extensive than previously appreciated, as both genetic and pharmacological disruption of the electron transport chain caused upregulation of the Alzheimer’s disease risk factor apolipoprotein E (APOE) and other secretome components. Indirect disruption of the electron transport chain by gene editing of SLC25A mitochondrial membrane transporters as well as direct genetic and pharmacological disruption of either complexes I, III, or the copper-containing complex IV of the electron transport chain elicited upregulation of APOE transcript, protein, and secretion, up to 49-fold. These APOE phenotypes were robustly expressed in diverse cell types and iPSC-derived human astrocytes as part of an inflammatory gene expression program. Moreover, age- and genotype-dependent decline in brain levels of respiratory complex I preceded an increase in APOE in the 5xFAD mouse model. We propose that mitochondria act as novel upstream regulators of APOE-dependent cellular processes in health and disease.
APOE Expression and Secretion are Modulated by Mitochondrial Dysfunction
Mitochondria influence cellular function through both cell-autonomous and non-cell autonomous mechanisms, such as production of paracrine and endocrine factors. Here, we demonstrate that mitochondrial regulation of the secretome is more extensive than previously appreciated, as both genetic and pharmacological disruption of the electron transport chain caused upregulation of the Alzheimer’s disease risk factor apolipoprotein E (APOE) and other secretome components. This upregulation of secretory proteins was of a similar extent as modifications to the mitochondrial annotated proteome. Indirect disruption of the electron transport chain by gene editing of SLC25A mitochondrial membrane transporters as well as direct genetic and pharmacological disruption of either complexes I, III, or the copper-containing complex IV of the electron transport chain, elicited upregulation of APOE transcript, protein, and secretion, up to 49-fold. These APOE phenotypes were robustly expressed in diverse cell types and iPSC-derived human astrocytes as part of an inflammatory gene expression program. Moreover, age- and genotype-dependent decline in brain levels of respiratory complex I preceded an increase in APOE in the 5xFAD mouse model. We propose that mitochondria act as novel upstream regulators of APOE-dependent cellular processes in health and disease.
APOE Expression and Secretion are Modulated by Copper-Dependent and -Independent Mitochondrial Dysfunction
Mitochondria are dynamic organelles that influence cellular function through both cell-autonomous and non-cell autonomous mechanisms, such as production of paracrine and endocrine factors. Here, we demonstrate that mitochondrial regulation of the secretome is more extensive than previously appreciated, as both genetic and pharmacological disruption of the inner mitochondrial membrane caused upregulation of the Alzheimers disease risk factor apolipoprotein E (APOE) and other secretome components. This upregulation of secretory proteins was of a similar extent as modifications to the mitochondrial annotated proteome. Gene editing of SLC25A family inner mitochondrial membrane transporters, as well as genetic and pharmacological disruption of copper-dependent and independent steps of electron transport chain assembly and function, caused upregulation of APOE transcript, protein, and secretion, up to 16-fold. These APOE phenotypes were robustly expressed in diverse cell types and iPSC-derived human astrocytes as part of an inflammatory gene expression program. Moreover, age-dependent high expression of APOE in the 5xFAD mouse model correlated with low expression of respiratory chain complexes in brain. We propose that mitochondria act as novel upstream regulators of APOE-dependent cellular processes in health and disease. Competing Interest Statement The authors have declared no competing interest. Footnotes * New figure with mouse data and 2 new authors
A Defined Antigen Skin Test That Enables Implementation of BCG Vaccination for Control of Bovine Tuberculosis: Proof of Concept
In most low- and middle-income countries (LMICs), bovine tuberculosis (bTB) remains endemic due to the absence of control programs. This is because successful bTB control and eradication programs have relied on test-and-slaughter strategies that are socioeconomically unfeasible in LMICs. While Bacillus Calmette-Guérin (BCG) vaccine-induced protection for cattle has long been documented in experimental and field trials, its use in control programs has been precluded by the inability to differentiate BCG-vaccinated from naturally infected animals using the OIE-prescribed purified protein derivative (PPD)-based tuberculin skin tests. In the current study, the diagnostic specificity and capability for differentiating infected from vaccinated animals (DIVA) of a novel defined antigen skin test (DST) in BCG-vaccinated (Bos taurus ssp. taurus x B. t. ssp. indicus) calves were compared with the performance of traditional PPD-tuberculin in both the skin test and in vitro interferon-gamma release assay (IGRA). The IFN-γ production from whole blood cells stimulated with both PPDs increased significantly from the 0 week baseline levels, while DST induced no measurable IFN-γ production in BCG-vaccinated calves. None of the 15 BCG-vaccinated calves were reactive with the DST skin test (100% specificity; one-tailed lower 95% CI: 82). In contrast, 10 of 15 BCG-vaccinated calves were classified as reactors with the PPD-based single intradermal test (SIT) (specificity in vaccinated animals = 33%; 95% CI: 12, 62). Taken together, the results provide strong evidence that the DST is highly specific and enables DIVA capability in both skin and IGRA assay format, thereby enabling the implementation of BCG vaccine-based bTB control, particularly in settings where test and slaughter remain unfeasible.In most low- and middle-income countries (LMICs), bovine tuberculosis (bTB) remains endemic due to the absence of control programs. This is because successful bTB control and eradication programs have relied on test-and-slaughter strategies that are socioeconomically unfeasible in LMICs. While Bacillus Calmette-Guérin (BCG) vaccine-induced protection for cattle has long been documented in experimental and field trials, its use in control programs has been precluded by the inability to differentiate BCG-vaccinated from naturally infected animals using the OIE-prescribed purified protein derivative (PPD)-based tuberculin skin tests. In the current study, the diagnostic specificity and capability for differentiating infected from vaccinated animals (DIVA) of a novel defined antigen skin test (DST) in BCG-vaccinated (Bos taurus ssp. taurus x B. t. ssp. indicus) calves were compared with the performance of traditional PPD-tuberculin in both the skin test and in vitro interferon-gamma release assay (IGRA). The IFN-γ production from whole blood cells stimulated with both PPDs increased significantly from the 0 week baseline levels, while DST induced no measurable IFN-γ production in BCG-vaccinated calves. None of the 15 BCG-vaccinated calves were reactive with the DST skin test (100% specificity; one-tailed lower 95% CI: 82). In contrast, 10 of 15 BCG-vaccinated calves were classified as reactors with the PPD-based single intradermal test (SIT) (specificity in vaccinated animals = 33%; 95% CI: 12, 62). Taken together, the results provide strong evidence that the DST is highly specific and enables DIVA capability in both skin and IGRA assay format, thereby enabling the implementation of BCG vaccine-based bTB control, particularly in settings where test and slaughter remain unfeasible.