Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3
result(s) for
"Kandell, Wendy M."
Sort by:
MicroRNA-155 governs SHIP-1 expression and localization in NK cells and regulates subsequent infiltration into murine AT3 mammary carcinoma
2020
NK cell migration and activation are crucial elements of tumor immune surveillance. In mammary carcinomas, the number and function of NK cells is diminished, despite being positively associated with clinical outcome. MicroRNA-155 (miR-155) has been shown to be an important regulator of NK cell activation through its interaction with SHIP-1 downstream of inhibitory NK receptor signaling, but has not been explored in regard to NK cell migration. Here, we explored the migratory potential and function of NK cells in subcutaneous AT3 in mice lacking miR-155. Without tumor, these bic/miR-155-/- mice possess similar numbers of NK cells that exhibit comparable surface levels of cytotoxic receptors as NK cells from wild-type (WT) mice. Isolated miR-155-/- NK cells also exhibit equivalent cytotoxicity towards tumor targets in vitro compared to isolated WT control NK cells, despite overexpression of known miR-155 gene targets. NK cells isolated from miR-155-/- mice exhibit impaired F-actin polymerization and migratory capacity in Boyden-chamber assays in response chemokine (C-C motif) ligand 2 (CCL2). This migratory capacity could be normalized in the presence of SHIP-1 inhibitors. Of note, miR-155-/- mice challenged with mammary carcinomas exhibited heightened tumor burden which correlated with a lower number of tumor-infiltrating NK1.1+ cells. Our results support a novel, physiological role for SHIP-1 in the control of NK cell tumor trafficking, and implicate miR-155 in the regulation of NK cell chemotaxis, in the context of mammary carcinoma. This may implicate dysfunctional NK cells in the lack of tumor clearance in mice.
Journal Article
Fighting Cancer with Mathematics and Viruses
by
Kandell, Wendy
,
Santiago, Daniel
,
Engeland, Christine
in
Adaptive immunity
,
Antitumor activity
,
Cancer
2017
After decades of research, oncolytic virotherapy has recently advanced to clinical application, and currently a multitude of novel agents and combination treatments are being evaluated for cancer therapy. Oncolytic agents preferentially replicate in tumor cells, inducing tumor cell lysis and complex antitumor effects, such as innate and adaptive immune responses and the destruction of tumor vasculature. With the availability of different vector platforms and the potential of both genetic engineering and combination regimens to enhance particular aspects of safety and efficacy, the identification of optimal treatments for patient subpopulations or even individual patients becomes a top priority. Mathematical modeling can provide support in this arena by making use of experimental and clinical data to generate hypotheses about the mechanisms underlying complex biology and, ultimately, predict optimal treatment protocols. Increasingly complex models can be applied to account for therapeutically relevant parameters such as components of the immune system. In this review, we describe current developments in oncolytic virotherapy and mathematical modeling to discuss the benefit of integrating different modeling approaches into biological and clinical experimentation. Conclusively, we propose a mutual combination of these research fields to increase the value of the preclinical development and the therapeutic efficacy of the resulting treatments.
Journal Article
Functional recovery of natural killer cell activity by nanoparticle‐mediated delivery of transforming growth factor beta 2 small interfering RNA
2019
Natural killer (NK) cells are at the forefront of immunotherapies, as they have potent innate cytolytic effects on cancer cells. The success of NK cell therapies requires that they overcome immunosuppression in the tumor microenvironment. Tumors produce immunosuppressive factors like transforming growth factor beta (TGF‐β) that inhibit the effector functions of NK cells. Silencing of TGF‐beta signaling in NK cells is a potential approach to enhance their functions. However, transfection of NK cells by conventional methods is challenging. Here, we report the development of a nanoparticle (NP) system that delivers small interfering RNA for the TGF‐β receptor 2 (TGFBR2) into NK cells to restore their activation against cancer cells. Manganese dioxide NPs were synthesized by the reduction of potassium permanganate by poly (allylamine), which effectively complexed siRNA and protected it from degradation. The NPs were cytocompatible with NK cells and, upon loading with TGFBR2 siRNA, resulted in a 90% knockdown of the TGFBR2 receptor. NP‐mediated TGFBR2 receptor knockdown protected NK cells against TGF‐β suppression, which was studied in both two‐dimensional and three‐dimensional lung cancer cell culture systems. Namely, NK cells treated with TGFBR2 siRNA loaded NPs demonstrated higher interferon gamma production, infiltration, and killing of lung cancer cells compared with control NK cells. This study demonstrates the feasibility of NP‐mediated RNA interference in NK cells to increase their resilience to the immunosuppressive environments in solid tumors.
Journal Article