Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
85
result(s) for
"Kapanidis, Achillefs"
Sort by:
Live-cell superresolution microscopy reveals the organization of RNA polymerase in the bacterial nucleoid
by
Lesterlin, Christian
,
Uphoff, Stephan
,
Kapanidis, Achillefs N.
in
Bacteria
,
Bacterial Proteins - metabolism
,
Biological Sciences
2015
Despite the fundamental importance of transcription, a comprehensive analysis of RNA polymerase (RNAP) behavior and its role in the nucleoid organization in vivo is lacking. Here, we used superresolution microscopy to study the localization and dynamics of the transcription machinery and DNA in live bacterial cells, at both the single-molecule and the population level. We used photoactivated single-molecule tracking to discriminate between mobile RNAPs and RNAPs specifically bound to DNA, either on promoters or transcribed genes. Mobile RNAPs can explore the whole nucleoid while searching for promoters, and spend 85% of their search time in nonspecific interactions with DNA. On the other hand, the distribution of specifically bound RNAPs shows that low levels of transcription can occur throughout the nucleoid. Further, clustering analysis and 3D structured illumination microscopy (SIM) show that dense clusters of transcribing RNAPs form almost exclusively at the nucleoid periphery. Treatment with rifampicin shows that active transcription is necessary for maintaining this spatial organization. In faster growth conditions, the fraction of transcribing RNAPs increases, as well as their clustering. Under these conditions, we observed dramatic phase separation between the densest clusters of RNAPs and the densest regions of the nucleoid. These findings show that transcription can cause spatial reorganization of the nucleoid, with movement of gene loci out of the bulk of DNA as levels of transcription increase. This work provides a global view of the organization of RNA polymerase and transcription in living cells.
Journal Article
High-throughput super-resolution analysis of influenza virus pleomorphism reveals insights into viral spatial organization
2023
Many viruses form highly pleomorphic particles. In influenza, virion structure is of interest not only in the context of virus assembly, but also because pleomorphic variations may correlate with infectivity and pathogenicity. We have used fluorescence super-resolution microscopy combined with a rapid automated analysis pipeline, a method well-suited to the study of large numbers of pleomorphic structures, to image many thousands of individual influenza virions; gaining information on their size, morphology and the distribution of membrane-embedded and internal proteins. We observed broad phenotypic variability in filament size, and Fourier transform analysis of super-resolution images demonstrated no generalized common spatial frequency patterning of HA or NA on the virion surface, suggesting a model of virus particle assembly where the release of progeny filaments from cells occurs in a stochastic way. We also showed that viral RNP complexes are located preferentially within Archetti bodies when these were observed at filament ends, suggesting that these structures may play a role in virus transmission. Our approach therefore offers exciting new insights into influenza virus morphology and represents a powerful technique that is easily extendable to the study of pleomorphism in other pathogenic viruses.
Journal Article
Closing and opening of the RNA polymerase trigger loop
by
Ebright, Richard H.
,
Mazumder, Abhishek
,
Kapanidis, Achillefs N.
in
Biological Sciences
,
Biophysics and Computational Biology
,
Catalytic Domain
2020
The RNA polymerase (RNAP) trigger loop (TL) is a mobile structural element of the RNAP active center that, based on crystal structures, has been proposed to cycle between an “unfolded”/“open” state that allows an NTP substrate to enter the active center and a “folded”/“closed” state that holds the NTP substrate in the active center. Here, by quantifying single-molecule fluorescence resonance energy transfer between a first fluorescent probe in the TL and a second fluorescent probe elsewhere in RNAP or in DNA, we detect and characterize TL closing and opening in solution. We show that the TL closes and opens on the millisecond timescale; we show that TL closing and opening provides a checkpoint for NTP complementarity, NTP ribo/deoxyribo identity, and NTP tri/di/monophosphate identity, and serves as a target for inhibitors; and we show that one cycle of TL closing and opening typically occurs in each nucleotide addition cycle in transcription elongation.
Journal Article
Single-molecule imaging of UvrA and UvrB recruitment to DNA lesions in living Escherichia coli
by
Sherratt, David J.
,
Stracy, Mathew
,
Zawadzki, Pawel
in
631/1647/245/2225
,
631/326/1320
,
631/337/1427/1430
2016
Nucleotide excision repair (NER) removes chemically diverse DNA lesions in all domains of life. In
Escherichia coli
, UvrA and UvrB initiate NER, although the mechanistic details of how this occurs
in vivo
remain to be established. Here, we use single-molecule fluorescence imaging to provide a comprehensive characterization of the lesion search, recognition and verification process in living cells. We show that NER initiation involves a two-step mechanism in which UvrA scans the genome and locates DNA damage independently of UvrB. Then UvrA recruits UvrB from solution to the lesion. These steps are coordinated by ATP binding and hydrolysis in the ‘proximal’ and ‘distal’ UvrA ATP-binding sites. We show that initial UvrB-independent damage recognition by UvrA requires ATPase activity in the distal site only. Subsequent UvrB recruitment requires ATP hydrolysis in the proximal site. Finally, UvrA dissociates from the lesion complex, allowing UvrB to orchestrate the downstream NER reactions.
Nucleotide excision repair is able to identify and remove a wide range of DNA helix distorting lesions from the genome. Here the authors use single molecule imaging of UvrA and UvrB molecules and suggest a two-step ‘scan and recruit’ model for UvrA function.
Journal Article
Single-molecule DNA repair in live bacteria
by
Sherratt, David J.
,
Reyes-Lamothe, Rodrigo
,
Uphoff, Stephan
in
bacteria
,
Bacteria - metabolism
,
Biological Sciences
2013
Cellular DNA damage is reversed by balanced repair pathways that avoid accumulation of toxic intermediates. Despite their importance, the organization of DNA repair pathways and the function of repair enzymes in vivo have remained unclear because of the inability to directly observe individual reactions in living cells. Here, we used photoactivation, localization, and tracking in live Escherichia coli to directly visualize single fluorescent labeled DNA polymerase I (Pol) and ligase (Lig) molecules searching for DNA gaps and nicks, performing transient reactions, and releasing their products. Our general approach provides enzymatic rates and copy numbers, substrate-search times, diffusion characteristics, and the spatial distribution of reaction sites, at the single-cell level, all in one measurement. Single repair events last 2.1 s (Pol) and 2.5 s (Lig), respectively. Pol and Lig activities increased fivefold over the basal level within minutes of DNA methylation damage; their rates were limited by upstream base excision repair pathway steps. Pol and Lig spent >80% of their time searching for free substrates, thereby minimizing both the number and lifetime of toxic repair intermediates. We integrated these single-molecule observations to generate a quantitative, systems-level description of a model repair pathway in vivo.
Journal Article
Reliability and accuracy of single-molecule FRET studies for characterization of structural dynamics and distances in proteins
by
Chung, Sang Yoon
,
Tinnefeld, Philip
,
Moya Muñoz, Gabriel G.
in
631/1647/2258
,
631/1647/527/2047
,
631/45/612
2023
Single-molecule Förster-resonance energy transfer (smFRET) experiments allow the study of biomolecular structure and dynamics in vitro and in vivo. We performed an international blind study involving 19 laboratories to assess the uncertainty of FRET experiments for proteins with respect to the measured FRET efficiency histograms, determination of distances, and the detection and quantification of structural dynamics. Using two protein systems with distinct conformational changes and dynamics, we obtained an uncertainty of the FRET efficiency ≤0.06, corresponding to an interdye distance precision of ≤2 Å and accuracy of ≤5 Å. We further discuss the limits for detecting fluctuations in this distance range and how to identify dye perturbations. Our work demonstrates the ability of smFRET experiments to simultaneously measure distances and avoid the averaging of conformational dynamics for realistic protein systems, highlighting its importance in the expanding toolbox of integrative structural biology.
An international blind study confirms that smFRET measurements on dynamic proteins are highly reproducible across instruments, analysis procedures and timescales, further highlighting the promise of smFRET for dynamic structural biology.
Journal Article
Single-molecule FRET for virology: 20 years of insight into protein structure and dynamics
by
Kapanidis, Achillefs N.
,
Robb, Nicole C.
,
Groves, Danielle
in
Antiviral agents
,
Antiviral drugs
,
Cryoelectron Microscopy
2023
Although viral protein structure and replication mechanisms have been explored extensively with X-ray crystallography, cryo-electron microscopy, and population imaging studies, these methods are often not able to distinguish dynamic conformational changes in real time. Single-molecule fluorescence resonance energy transfer (smFRET) offers unique insights into interactions and states that may be missed in ensemble studies, such as nucleic acid or protein structure, and conformational transitions during folding, receptor–ligand interactions, and fusion. We discuss the application of smFRET to the study of viral protein conformational dynamics, with a particular focus on viral glycoprotein dynamics, viral helicases, proteins involved in HIV reverse transcription, and the influenza RNA polymerase. smFRET experiments have played a crucial role in deciphering conformational changes in these processes, emphasising the importance of smFRET as a tool to help elucidate the life cycle of viral pathogens and identify key anti-viral targets.
Journal Article
Pointwise prediction of protein diffusive properties using machine learning
2025
The understanding of cellular mechanisms benefits substantially from accurate determination of protein diffusive properties. Prior work in this field primarily focuses on traditional methods, such as mean square displacements, for calculation of protein diffusion coefficients and biological states. This proves difficult and error-prone for proteins undergoing heterogeneous behaviour, particularly in complex environments, limiting the exploration of new biological behaviours. The importance of determining protein diffusion coefficients, anomalous exponents, and biological behaviours led to the Anomalous Diffusion Challenge 2024, exploring machine learning methods to infer these variables in heterogeneous trajectories with time-dependent changepoints. In response to the challenge, we present M3, a machine learning method for pointwise inference of diffusive coefficients, anomalous exponents, and states along noisy heterogenous protein trajectories. M3 makes use of long short-term memory cells to achieve small mean absolute errors for the diffusion coefficient and anomalous exponent alongside high state accuracies (>90%). Subsequently, we implement changepoint detection to determine timepoints at which protein behaviour changes. M3 removes the need for expert fine-tuning required in most conventional statistical methods while being computationally inexpensive to train. The model finished in the Top 5 of the Anomalous Diffusive Challenge 2024, with small improvements made since challenge closure.
Journal Article
Viral detection and identification in 20 min by rapid single-particle fluorescence in-situ hybridization of viral RNA
2021
The increasing risk from viral outbreaks such as the ongoing COVID-19 pandemic exacerbates the need for rapid, affordable and sensitive methods for virus detection, identification and quantification; however, existing methods for detecting virus particles in biological samples usually depend on multistep protocols that take considerable time to yield a result. Here, we introduce a rapid fluorescence in situ hybridization (FISH) protocol capable of detecting influenza virus, avian infectious bronchitis virus and SARS-CoV-2 specifically and quantitatively in approximately 20 min, in virus cultures, combined nasal and throat swabs with added virus and likely patient samples without previous purification. This fast and facile workflow can be adapted both as a lab technique and a future diagnostic tool in enveloped viruses with an accessible genome.
Journal Article