Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
234 result(s) for "Kaplan, Frederick S"
Sort by:
Fibrodysplasia Ossificans Progressiva: Clinical and Genetic Aspects
Fibrodysplasia ossificans progressiva (FOP) is a severely disabling heritable disorder of connective tissue characterized by congenital malformations of the great toes and progressive heterotopic ossification that forms qualitatively normal bone in characteristic extraskeletal sites. The worldwide prevalence is approximately 1/2,000,000. There is no ethnic, racial, gender, or geographic predilection to FOP. Children who have FOP appear normal at birth except for congenital malformations of the great toes. During the first decade of life, sporadic episodes of painful soft tissue swellings (flare-ups) occur which are often precipitated by soft tissue injury, intramuscular injections, viral infection, muscular stretching, falls or fatigue. These flare-ups transform skeletal muscles, tendons, ligaments, fascia, and aponeuroses into heterotopic bone, rendering movement impossible. Patients with atypical forms of FOP have been described. They either present with the classic features of FOP plus one or more atypical features [FOP plus], or present with major variations in one or both of the two classic defining features of FOP [FOP variants]. Classic FOP is caused by a recurrent activating mutation (617G>A; R206H) in the gene ACVR1/ALK2 encoding Activin A receptor type I/Activin-like kinase 2, a bone morphogenetic protein (BMP) type I receptor. Atypical FOP patients also have heterozygous ACVR1 missense mutations in conserved amino acids. The diagnosis of FOP is made by clinical evaluation. Confirmatory genetic testing is available. Differential diagnosis includes progressive osseous heteroplasia, osteosarcoma, lymphedema, soft tissue sarcoma, desmoid tumors, aggressive juvenile fibromatosis, and non-hereditary (acquired) heterotopic ossification. Although most cases of FOP are sporadic (noninherited mutations), a small number of inherited FOP cases show germline transmission in an autosomal dominant pattern. At present, there is no definitive treatment, but a brief 4-day course of high-dose corticosteroids, started within the first 24 hours of a flare-up, may help reduce the intense inflammation and tissue edema seen in the early stages of the disease. Preventative management is based on prophylactic measures against falls, respiratory decline, and viral infections. The median lifespan is approximately 40 years of age. Most patients are wheelchair-bound by the end of the second decade of life and commonly die of complications of thoracic insufficiency syndrome.
Prevalence of fibrodysplasia ossificans progressiva (FOP) in the United States: estimate from three treatment centers and a patient organization
Background Fibrodysplasia ossificans progressiva (FOP), an ultra-rare, progressive, and permanently disabling disorder of extraskeletal ossification, is characterized by episodic and painful flare-ups and irreversible heterotopic ossification in muscles, tendons, and ligaments. Prevalence estimates have been hindered by the rarity of FOP and the heterogeneity of disease presentation. This study aimed to provide a baseline prevalence of FOP in the United States, based on contact with one of 3 leading treatment centers for FOP (University of Pennsylvania, Mayo Clinic, or University of California San Francisco), the International Fibrodysplasia Ossificans Progressiva Association (IFOPA) membership list, or the IFOPA FOP Registry through July 22, 2020. Results Patient records were reviewed, collected, and deduplicated using first and last name initials, sex, state, and year of birth. A Kaplan–Meier survival curve was applied to each individual patient to estimate the probability that he or she was still alive, and a probability-weighted net prevalence estimate was calculated. After deduplication, 373 unique patients were identified in the United States, 294 of whom who were not listed as deceased in any list. The average time since last contact for 284 patients was 1.5 years. Based on the application of the survival probability, it is estimated that 279 of these patients were alive on the prevalence date (22 July 2020). An adjusted prevalence of 0.88 per million US residents was calculated using either an average survival rate estimate of 98.4% or a conservative survival rate estimate of 92.3% (based on the Kaplan–Meier survival curve from a previous study) and the US Census 2020 estimate of 329,992,681 on prevalence day. Conclusions This study suggests that the prevalence of FOP is higher than the often-cited value of 0.5 per million. Even so, because inclusion in this study was contingent upon treatment by the authors, IFOPA membership with confirmed clinical diagnosis, and the FOP Registry, the prevalence of FOP in the US may be higher than that identified here. Thus, it is imperative that efforts be made to identify and provide expert care for patients with this ultra-rare, significantly debilitating disease.
Inherited human diseases of heterotopic bone formation
Heterotopic ossification is the formation of extraskeletal bone within soft tissues in the body. In two inherited heterotopic ossification disorders, fibrodysplasia ossificans progressiva and progressive osseous heteroplasia, specific gene mutations have been identified and, as outlined in this Review, result in aberrant bone formation and abnormal regulation of cell-fate signaling pathways in patients with these disorders. Human disorders of hereditary and nonhereditary heterotopic ossification are conditions in which osteogenesis occurs outside of the skeleton, within soft tissues of the body. The resulting extraskeletal bone is normal. The aberration lies within the mechanisms that regulate cell-fate determination, directing the inappropriate formation of cartilage or bone, or both, in tissues such as skeletal muscle and adipose tissue. Specific gene mutations have been identified in two rare inherited disorders that are clinically characterized by extensive and progressive extraskeletal bone formation—fibrodysplasia ossificans progressiva and progressive osseous heteroplasia. In fibrodysplasia ossificans progressiva, activating mutations in activin receptor type-1, a bone morphogenetic protein type I receptor, induce heterotopic endochondral ossification, which results in the development of a functional bone organ system that includes skeletal-like bone and bone marrow. In progressive osseous heteroplasia, the heterotopic ossification leads to the formation of mainly intramembranous bone tissue in response to inactivating mutations in the GNAS gene. Patients with these diseases variably show malformation of normal skeletal elements, identifying the causative genes and their associated signaling pathways as key mediators of skeletal development in addition to regulating cell-fate decisions by adult stem cells. Key Points Heterotopic ossification is the formation of extraskeletal bone in soft connective tissues The bone tissue that forms during heterotopic ossification is qualitatively normal Two rare inherited forms of heterotopic ossification are fibrodysplasia ossificans progressiva (FOP) and progressive osseous heteroplasia (POH) FOP is caused by a mutation in ACVR1 , which encodes a bone morphogenetic protein type I receptor; POH is caused by a mutation in the GNAS locus The genes and signaling pathways that are altered in these genetic disorders are key regulators of skeletal development and cell differentiation Understanding the cellular mechanisms responsible for these rare disorders might lead to the development of therapeutic approaches relevant to common conditions of excessive and insufficient bone formation
Suppression of heterotopic ossification in fibrodysplasia ossificans progressiva using AAV gene delivery
Heterotopic ossification is the most disabling feature of fibrodysplasia ossificans progressiva, an ultra-rare genetic disorder for which there is currently no prevention or treatment. Most patients with this disease harbor a heterozygous activating mutation (c.617 G > A;p.R206H) in ACVR1. Here, we identify recombinant AAV9 as the most effective serotype for transduction of the major cells-of-origin of heterotopic ossification. We use AAV9 delivery for gene replacement by expression of codon-optimized human ACVR1, ACVR1R206H allele-specific silencing by AAV-compatible artificial miRNA and a combination of gene replacement and silencing. In mouse skeletal cells harboring a conditional knock-in allele of human mutant ACVR1 and in patient-derived induced pluripotent stem cells, AAV gene therapy ablated aberrant Activin A signaling and chondrogenic and osteogenic differentiation. In Acvr1(R206H) knock-in mice treated locally in early adulthood or systemically at birth, trauma-induced endochondral bone formation was markedly reduced, while inflammation and fibroproliferative responses remained largely intact in the injured muscle. Remarkably, spontaneous heterotopic ossification also substantially decreased in in Acvr1(R206H) knock-in mice treated systemically at birth or in early adulthood. Collectively, we develop promising gene therapeutics that can prevent disabling heterotopic ossification in mice, supporting clinical translation to patients with fibrodysplasia ossificans progressiva. Fibrodysplasia ossificans progressiva is an ultra-rare genetic disorder with progressive heterotopic ossification. Yang et al develop different gene therapy approaches and show their efficacy in mouse models and in human induced pluripotent stem cells.
FOP: From Biomolecules to Hope
In the introduction to his 1970 textbook BIOCHEMISTRY, Albert Lehninger wrote \"Living things are composed of lifeless molecules [...].In the introduction to his 1970 textbook BIOCHEMISTRY, Albert Lehninger wrote \"Living things are composed of lifeless molecules [...].
The HIF-1α and mTOR Pathways Amplify Heterotopic Ossification
Fibrodysplasia ossificans progressiva (FOP; MIM# 135100) is an ultra-rare congenital disorder caused by gain-of-function point mutations in the Activin receptor A type I (ACVR1, also known as ALK2) gene. FOP is characterized by episodic heterotopic ossification (HO) in skeletal muscles, tendons, ligaments, or other soft tissues that progressively causes irreversible loss of mobility. FOP mutations cause mild ligand-independent constitutive activation as well as ligand-dependent bone morphogenetic protein (BMP) pathway hypersensitivity of mutant ACVR1. BMP signaling is also a key pathway for mediating acquired HO. However, HO is a highly complex biological process involving multiple interacting signaling pathways. Among them, the hypoxia-inducible factor (HIF) and mechanistic target of rapamycin (mTOR) pathways are intimately involved in both genetic and acquired HO formation. HIF-1α inhibition or mTOR inhibition reduces HO formation in mouse models of FOP or acquired HO in part by de-amplifying the BMP pathway signaling. Here, we review the recent progress on the mechanisms of the HIF-1α and mTOR pathways in the amplification of HO lesions and discuss the future directions and strategies to translate the targeting of HIF-1α and the mTOR pathways into clinical interventions for FOP and other forms of HO.
Natural history of fibrodysplasia ossificans progressiva: cross-sectional analysis of annotated baseline phenotypes
Background Fibrodysplasia Ossificans Progressiva (FOP; OMIM#135100) is an ultra-rare, severely disabling genetic disease characterized by congenital malformation of the great toes and progressive heterotopic ossification (HO) in muscles, tendons, ligaments, fascia, and aponeuroses often preceded by painful, recurrent soft tissue swelling (flare-ups). The formation of HO leads to progressive disability, severe functional limitations in joint mobility, and to a shortened life-span. In this prospective natural history study, we describe the baseline, cross-sectional disease phenotype of 114 individuals with FOP. Methods All subjects underwent protocol-specified baseline assessments to determine their disease status. Cross-sectional analyses were performed using linear regression in which functional evaluations (Cumulative Analogue Joint Involvement Scale [CAJIS] and the FOP-Physical Function Questionnaire [FOP-PFQ]) and the burden of HO as measured by low-dose whole body CT (volume of HO and number of body regions with HO) were assessed. Results Findings from 114 subjects (age range 4 to 56 years) were evaluated. While subject age was significantly ( p  < 0.0001) correlated with increased CAJIS ( r  = 0.66) and FOP-PFQ scores ( r  = 0.41), the estimated mean increases per year (based on cross-sectional average changes over time) were small (0.47 units and 1.2%, respectively). There was also a significant ( p  < 0.0001) correlation between baseline age and HO volume ( r  = 0.56), with an estimated mean increase of 25,574 mm 3 /year. There were significant ( p  < 0.0001) correlations between the objective assessment of HO volume and clinical assessments of CAJIS ( r  = 0.57) and FOP-PFQ ( r  = 0.52). Conclusions Based on the cross-sectional analysis of the baseline data, functional and physical disability as assessed by CAJIS and the FOP-PFQ increased over time. Although longitudinal data are not yet available, the cross-sectional analyses suggest that CAJIS and FOP-PFQ are not sensitive to detect substantial progression over a 1- to 2-year period. Future evaluation of longitudinal data will test this hypothesis. The statistically significant correlations between HO volume and the functional endpoints, and the estimated average annual increase in total HO volume, suggest that the formation of new HO will be measurable over the relative short-term course of a clinical trial, and represents an endpoint that is clinically meaningful to patients. Trial registration This study ( NCT02322255 ) was first posted on 23 December, 2014.
Fibrodysplasia ossificans progressiva: mechanisms and models of skeletal metamorphosis
Fibrodysplasia ossificans progressiva (FOP; MIM #135100) is a debilitating genetic disorder of connective tissue metamorphosis. It is characterized by malformation of the great (big) toes during embryonic skeletal development and by progressive heterotopic endochondral ossification (HEO) postnatally, which leads to the formation of a second skeleton of heterotopic bone. Individuals with these classic clinical features of FOP have the identical heterozygous activating mutation (c.617G>A; R206H) in the gene encoding ACVR1 (also known as ALK2), a bone morphogenetic protein (BMP) type I receptor. Disease activity caused by this ACVR1 mutation also depends on altered cell and tissue physiology that can be best understood in the context of a high-fidelity animal model. Recently, we developed such a knock-in mouse model for FOP (Acvr1R206H/+) that recapitulates the human disease, and provides a valuable new tool for testing and developing effective therapies. The FOP knock-in mouse and other models in Drosophila, zebrafish, chickens and mice provide an arsenal of tools for understanding BMP signaling and addressing outstanding questions of disease mechanisms that are relevant not only to FOP but also to a wide variety of disorders associated with regenerative medicine and tissue metamorphosis.
Cell Senescence in Heterotopic Ossification
The formation of bone outside the normal skeleton, or heterotopic ossification (HO), occurs through genetic and acquired mechanisms. Fibrodysplasia ossificans progressiva (FOP), the most devastating genetic condition of HO, is due to mutations in the ACVR1/ALK2 gene and is relentlessly progressive. Acquired HO is mostly precipitated by injury or orthopedic surgical procedures but can also be associated with certain conditions related to aging. Cellular senescence is a hallmark of aging and thought to be a tumor-suppressive mechanism with characteristic features such as irreversible growth arrest, apoptosis resistance, and an inflammatory senescence-associated secretory phenotype (SASP). Here, we review possible roles for cellular senescence in HO and how targeting senescent cells may provide new therapeutic approaches to both FOP and acquired forms of HO.
A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva
Fibrodysplasia ossificans progressiva (FOP) is a rare autosomal dominant disorder of skeletal malformations and progressive extraskeletal ossification. We mapped FOP to chromosome 2q23-24 by linkage analysis and identified an identical heterozygous mutation (617G → A; R206H) in the glycine-serine (GS) activation domain of ACVR1, a BMP type I receptor, in all affected individuals examined. Protein modeling predicts destabilization of the GS domain, consistent with constitutive activation of ACVR1 as the underlying cause of the ectopic chondrogenesis, osteogenesis and joint fusions seen in FOP. NOTE: In the version of this article initially published, several contributing authors were listed collectively under the name The International FOP Research Consortium. In order to facilitate the electronic citation of author contributions, the authors have chosen to delete the Consortium name and replace it with the names of the individual consortium authors in alphabetical order. This error has been corrected in the HTML and PDF versions of the article.