Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
87
result(s) for
"Kari, Lila"
Sort by:
An open-source k-mer based machine learning tool for fast and accurate subtyping of HIV-1 genomes
by
Solis-Reyes, Stephen
,
Poon, Art
,
Kari, Lila
in
Acquired immune deficiency syndrome
,
AIDS
,
Algorithms
2018
For many disease-causing virus species, global diversity is clustered into a taxonomy of subtypes with clinical significance. In particular, the classification of infections among the subtypes of human immunodeficiency virus type 1 (HIV-1) is a routine component of clinical management, and there are now many classification algorithms available for this purpose. Although several of these algorithms are similar in accuracy and speed, the majority are proprietary and require laboratories to transmit HIV-1 sequence data over the network to remote servers. This potentially exposes sensitive patient data to unauthorized access, and makes it impossible to determine how classifications are made and to maintain the data provenance of clinical bioinformatic workflows. We propose an open-source supervised and alignment-free subtyping method (Kameris) that operates on k-mer frequencies in HIV-1 sequences. We performed a detailed study of the accuracy and performance of subtype classification in comparison to four state-of-the-art programs. Based on our testing data set of manually curated real-world HIV-1 sequences (n = 2, 784), Kameris obtained an overall accuracy of 97%, which matches or exceeds all other tested software, with a processing rate of over 1,500 sequences per second. Furthermore, our fully standalone general-purpose software provides key advantages in terms of data security and privacy, transparency and reproducibility. Finally, we show that our method is readily adaptable to subtype classification of other viruses including dengue, influenza A, and hepatitis B and C virus.
Journal Article
Machine learning using intrinsic genomic signatures for rapid classification of novel pathogens: COVID-19 case study
by
Soltysiak, Maximillian P. M.
,
Kari, Lila
,
Randhawa, Gurjit S.
in
Accuracy
,
Alignment
,
Annotations
2020
The 2019 novel coronavirus (renamed SARS-CoV-2, and generally referred to as the COVID-19 virus) has spread to 184 countries with over 1.5 million confirmed cases. Such major viral outbreaks demand early elucidation of taxonomic classification and origin of the virus genomic sequence, for strategic planning, containment, and treatment. This paper identifies an intrinsic COVID-19 virus genomic signature and uses it together with a machine learning-based alignment-free approach for an ultra-fast, scalable, and highly accurate classification of whole COVID-19 virus genomes. The proposed method combines supervised machine learning with digital signal processing (MLDSP) for genome analyses, augmented by a decision tree approach to the machine learning component, and a Spearman's rank correlation coefficient analysis for result validation. These tools are used to analyze a large dataset of over 5000 unique viral genomic sequences, totalling 61.8 million bp, including the 29 COVID-19 virus sequences available on January 27, 2020. Our results support a hypothesis of a bat origin and classify the COVID-19 virus as Sarbecovirus, within Betacoronavirus. Our method achieves 100% accurate classification of the COVID-19 virus sequences, and discovers the most relevant relationships among over 5000 viral genomes within a few minutes, ab initio, using raw DNA sequence data alone, and without any specialized biological knowledge, training, gene or genome annotations. This suggests that, for novel viral and pathogen genome sequences, this alignment-free whole-genome machine-learning approach can provide a reliable real-time option for taxonomic classification.
Journal Article
DeLUCS: Deep learning for unsupervised clustering of DNA sequences
2022
We present a novel De ep L earning method for the U nsupervised C lustering of DNA S equences (DeLUCS) that does not require sequence alignment, sequence homology, or (taxonomic) identifiers. DeLUCS uses Frequency Chaos Game Representations ( FCGR ) of primary DNA sequences, and generates “mimic” sequence FCGRs to self-learn data patterns (genomic signatures) through the optimization of multiple neural networks. A majority voting scheme is then used to determine the final cluster assignment for each sequence. The clusters learned by DeLUCS match true taxonomic groups for large and diverse datasets, with accuracies ranging from 77% to 100%: 2,500 complete vertebrate mitochondrial genomes, at taxonomic levels from sub-phylum to genera; 3,200 randomly selected 400 kbp-long bacterial genome segments, into clusters corresponding to bacterial families; three viral genome and gene datasets, averaging 1,300 sequences each, into clusters corresponding to virus subtypes. DeLUCS significantly outperforms two classic clustering methods ( K -means++ and Gaussian Mixture Models) for unlabelled data, by as much as 47%. DeLUCS is highly effective, it is able to cluster datasets of unlabelled primary DNA sequences totalling over 1 billion bp of data, and it bypasses common limitations to classification resulting from the lack of sequence homology, variation in sequence length, and the absence or instability of sequence annotations and taxonomic identifiers. Thus, DeLUCS offers fast and accurate DNA sequence clustering for previously intractable datasets.
Journal Article
CGRclust: Chaos Game Representation for twin contrastive clustering of unlabelled DNA sequences
by
Alipour, Fatemeh
,
Kari, Lila
,
Hill, Kathleen A.
in
Algorithms
,
Alignment
,
Alignment-free DNA sequence comparison
2024
Background
Traditional supervised learning methods applied to DNA sequence taxonomic classification rely on the labor-intensive and time-consuming step of labelling the primary DNA sequences. Additionally, standard DNA classification/clustering methods involve time-intensive multiple sequence alignments, which impacts their applicability to large genomic datasets or distantly related organisms. These limitations indicate a need for robust, efficient, and scalable unsupervised DNA sequence clustering methods that do not depend on sequence labels or alignment.
Results
This study proposes CGRclust, a novel combination of unsupervised twin contrastive clustering of Chaos Game Representations (CGR) of DNA sequences, with convolutional neural networks (CNNs). To the best of our knowledge, CGRclust is the first method to use unsupervised learning for image classification (herein applied to two-dimensional CGR images) for clustering datasets of DNA sequences. CGRclust overcomes the limitations of traditional sequence classification methods by leveraging unsupervised twin contrastive learning to detect distinctive sequence patterns, without requiring DNA sequence alignment or biological/taxonomic labels. CGRclust accurately clustered twenty-five diverse datasets, with sequence lengths ranging from 664 bp to 100 kbp, including mitochondrial genomes of fish, fungi, and protists, as well as viral whole genome assemblies and synthetic DNA sequences. Compared with three recent clustering methods for DNA sequences (DeLUCS,
i
DeLUCS, and MeShClust v3.0.), CGRclust is the only method that surpasses 81.70% accuracy across all four taxonomic levels tested for mitochondrial DNA genomes of fish. Moreover, CGRclust also consistently demonstrates superior performance across all the viral genomic datasets. The high clustering accuracy of CGRclust on these twenty-five datasets, which vary significantly in terms of sequence length, number of genomes, number of clusters, and level of taxonomy, demonstrates its robustness, scalability, and versatility.
Conclusion
CGRclust is a novel, scalable, alignment-free DNA sequence clustering method that uses CGR images of DNA sequences and CNNs for twin contrastive clustering of unlabelled primary DNA sequences, achieving superior or comparable accuracy and performance over current approaches. CGRclust demonstrated enhanced reliability, by consistently achieving over 80% accuracy in more than 90% of the datasets analyzed. In particular, CGRclust performed especially well in clustering viral DNA datasets, where it consistently outperformed all competing methods.
Journal Article
ML-DSP: Machine Learning with Digital Signal Processing for ultrafast, accurate, and scalable genome classification at all taxonomic levels
2019
Background
Although software tools abound for the comparison, analysis, identification, and classification of genomic sequences, taxonomic classification remains challenging due to the magnitude of the datasets and the intrinsic problems associated with classification. The need exists for an approach and software tool that addresses the limitations of existing alignment-based methods, as well as the challenges of recently proposed alignment-free methods.
Results
We propose a novel combination of supervised
M
achine
L
earning with
D
igital
S
ignal
P
rocessing, resulting in
ML-DSP
: an alignment-free software tool for ultrafast, accurate, and scalable genome classification at all taxonomic levels. We test ML-DSP by classifying 7396 full mitochondrial genomes at various taxonomic levels, from kingdom to genus, with an average classification accuracy of >97
%
.
A quantitative comparison with state-of-the-art classification software tools is performed, on two small benchmark datasets and one large 4322 vertebrate mtDNA genomes dataset. Our results show that ML-DSP overwhelmingly outperforms the alignment-based software MEGA7 (alignment with MUSCLE or CLUSTALW) in terms of processing time, while having comparable classification accuracies for small datasets and superior accuracies for the large dataset. Compared with the alignment-free software FFP (Feature Frequency Profile), ML-DSP has significantly better classification accuracy, and is overall faster.
We also provide preliminary experiments indicating the potential of ML-DSP to be used for other datasets, by classifying 4271 complete dengue virus genomes into subtypes with 100% accuracy, and 4,710 bacterial genomes into phyla with 95.5% accuracy.
Lastly, our analysis shows that the “Purine/Pyrimidine”, “Just-A” and “Real” numerical representations of DNA sequences outperform ten other such numerical representations used in the Digital Signal Processing literature for DNA classification purposes.
Conclusions
Due to its superior classification accuracy, speed, and scalability to large datasets, ML-DSP is highly relevant in the classification of newly discovered organisms, in distinguishing genomic signatures and identifying their mechanistic determinants, and in evaluating genome integrity.
Journal Article
MT-MAG: Accurate and interpretable machine learning for complete or partial taxonomic assignments of metagenomeassembled genomes
2023
We propose MT-MAG, a novel machine learning-based software tool for the complete or partial hierarchically-structured taxonomic classification of metagenome-assembled genomes (MAGs). MT-MAG is alignment-free, with k -mer frequencies being the only feature used to distinguish a DNA sequence from another (herein k = 7). MT-MAG is capable of classifying large and diverse metagenomic datasets: a total of 245.68 Gbp in the training sets, and 9.6 Gbp in the test sets analyzed in this study. In addition to complete classifications, MT-MAG offers a “partial classification” option, whereby a classification at a higher taxonomic level is provided for MAGs that cannot be classified to the Species level. MT-MAG outputs complete or partial classification paths, and interpretable numerical classification confidences of its classifications, at all taxonomic ranks. To assess the performance of MT-MAG, we define a “weighted classification accuracy,” with a weighting scheme reflecting the fact that partial classifications at different ranks are not equally informative. For the two benchmarking datasets analyzed (genomes from human gut microbiome species, and bacterial and archaeal genomes assembled from cow rumen metagenomic sequences), MT-MAG achieves an average of 87.32% in weighted classification accuracy. At the Species level, MT-MAG outperforms DeepMicrobes, the only other comparable software tool, by an average of 34.79% in weighted classification accuracy. In addition, MT-MAG is able to completely classify an average of 67.70% of the sequences at the Species level, compared with DeepMicrobes which only classifies 47.45%. Moreover, MT-MAG provides additional information for sequences that it could not classify at the Species level, resulting in the partial or complete classification of 95.13%, of the genomes in the datasets analyzed. Lastly, unlike other taxonomic assignment tools (e.g., GDTB-Tk), MT-MAG is an alignment-free and genetic marker-free tool, able to provide additional bioinformatics analysis to confirm existing or tentative taxonomic assignments.
Journal Article
Additive methods for genomic signatures
by
Kopecki, Steffen
,
Karamichalis, Rallis
,
Solis-Reyes, Stephen
in
Algorithms
,
Animals
,
Bacteria - classification
2016
Background
Studies exploring the potential of Chaos Game Representations (CGR) of genomic sequences to act as “genomic signatures” (to be species- and genome-specific) showed that CGR patterns of nuclear and organellar DNA sequences of the same organism can be very different. While the hypothesis that CGRs of mitochondrial DNA sequences can act as genomic signatures was validated for a snapshot of all sequenced mitochondrial genomes available in the NCBI GenBank sequence database, to our knowledge no such extensive analysis of CGRs of nuclear DNA sequences exists to date.
Results
We analyzed an extensive dataset, totalling 1.45 gigabase pairs, of nuclear/nucleoid genomic sequences (nDNA) from 42 different organisms, spanning all major kingdoms of life. Our computational experiments indicate that CGR signatures of nDNA of two different origins cannot always be differentiated, especially if they originate from closely-related species such as
H. sapiens
and
P. troglodytes
or
E. coli
and
E. fergusonii
. To address this issue, we propose the general concept of
additive DNA signature of a set (collection) of DNA sequences
. One particular instance, the
composite DNA signature
, combines information from nDNA fragments and organellar (mitochondrial, chloroplast, or plasmid) genomes. We demonstrate that, in this dataset, composite DNA signatures originating from two different organisms can be differentiated in all cases, including those where the use of CGR signatures of nDNA failed or was inconclusive. Another instance, the
assembled DNA signature
, combines information from many short DNA subfragments (e.g., 100 basepairs) of a given DNA fragment, to produce its signature. We show that an assembled DNA signature has the same distinguishing power as a conventionally computed CGR signature, while using shorter contiguous sequences and potentially less sequence information.
Conclusions
Our results suggest that, while CGR signatures of nDNA cannot always play the role of genomic signatures, composite and assembled DNA signatures (separately or in combination) could potentially be used instead. Such additive signatures could be used, e.g., with raw unassembled next-generation sequencing (NGS) read data, when high-quality sequencing data is not available, or to complement information obtained by other methods of species identification or classification.
Journal Article
Simplifying the role of signals in tile self-assembly
2019
Sending signals through DNA-based structures is one of the methods used to enhance the capabilities of DNA self-assembly systems. Signal Tile Assembly Models at temperature one, in supertile-to-supertile attachment mode, have been showed to have universal computational power. We introduce a simplified signal tile assembly model, in one-tile-at-a-time attachment mode, and where signals can only be used to deactivate glues. We prove that such a simplified system at temperature one can still simulate a Turing machine. We also present a simplified signal tile assembly system, in supertile-to-supertile attachment mode, that assembles a thin, \\[N \\times N!\\], rectangle and has tile complexity \\[O(\\log N)\\]. This result is an improvement over the tile complexity of existing models for thin rectangle self-assembly.
Journal Article
An investigation into inter- and intragenomic variations of graphic genomic signatures
2015
Background
Motivated by the general need to identify and classify species based on molecular evidence, genome comparisons have been proposed that are based on measuring mostly Euclidean distances between Chaos Game Representation (CGR) patterns of genomic DNA sequences.
Results
We provide, on an extensive dataset and using several different distances, confirmation of the hypothesis that CGR patterns are preserved along a genomic DNA sequence, and are different for DNA sequences originating from genomes of different species. This finding lends support to the theory that CGRs of genomic sequences can act as
graphic genomic signatures
. In particular, we compare the CGR patterns of over five hundred different 150,000 bp genomic sequences spanning one complete chromosome from each of six organisms, representing all kingdoms of life:
H. sapiens
(Animalia; chromosome 21),
S. cerevisiae
(Fungi; chromosome 4),
A. thaliana
(Plantae; chromosome 1),
P. falciparum
(Protista; chromosome 14),
E. coli
(Bacteria - full genome), and
P. furiosus
(Archaea - full genome). To maximize the diversity within each species, we also analyze the interrelationships within a set of over five hundred 150,000 bp genomic sequences sampled from the entire aforementioned genomes. Lastly, we provide some preliminary evidence of this method’s ability to classify genomic DNA sequences at lower taxonomic levels by comparing sequences sampled from the entire genome of
H. sapiens
(class Mammalia, order Primates) and of
M. musculus
(class Mammalia, order Rodentia), for a total length of approximately 174 million basepairs analyzed. We compute pairwise distances between CGRs of these genomic sequences using six different distances, and construct Molecular Distance Maps, which visualize all sequences as points in a two-dimensional or three-dimensional space, to simultaneously display their interrelationships.
Conclusion
Our analysis confirms, for this dataset, that CGR patterns of DNA sequences from the same genome are in general quantitatively similar, while being different for DNA sequences from genomes of different species. Our assessment of the performance of the six distances analyzed uses three different quality measures and suggests that several distances outperform the Euclidean distance, which has so far been almost exclusively used for such studies.
Journal Article
Environment and taxonomy shape the genomic signature of prokaryotic extremophiles
by
Soltysiak, Maximillian P. M.
,
Arias, Pablo Millán
,
Kari, Lila
in
631/114/1386
,
631/181/2480
,
Adaptation
2023
This study provides comprehensive quantitative evidence suggesting that adaptations to extreme temperatures and pH imprint a discernible environmental component in the genomic signature of microbial extremophiles. Both supervised and unsupervised machine learning algorithms were used to analyze genomic signatures, each computed as the
k
-mer frequency vector of a 500 kbp DNA fragment arbitrarily selected to represent a genome. Computational experiments classified/clustered genomic signatures extracted from a curated dataset of
∼
700
extremophile (temperature, pH) bacteria and archaea genomes, at multiple scales of analysis,
1
≤
k
≤
6
. The supervised learning resulted in high accuracies for taxonomic classifications at
2
≤
k
≤
6
, and medium to medium-high accuracies for environment category classifications of the same datasets at
3
≤
k
≤
6
. For
k
=
3
, our findings were largely consistent with amino acid compositional biases and codon usage patterns in coding regions, previously attributed to extreme environment adaptations. The unsupervised learning of unlabelled sequences identified several exemplars of hyperthermophilic organisms with large similarities in their genomic signatures, in spite of belonging to different domains in the Tree of Life.
Journal Article