Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
377 result(s) for "Karjalainen, J"
Sort by:
Divergent temperature-specific metabolic and feeding rates of native and invasive crayfish
Temperature is one of the most important factors governing the activity of ectothermic species, and it plays an important but less studied role in the manifestation of invasive species impacts. In this study, we investigated temperature-specific feeding and metabolic rates of invasive and native crayfish, and evaluated how temperature regulates their ecological impacts at present and in future according to different climatic scenarios by bioenergetics modelling. We conducted a series of maximum food consumption experiments and measured the metabolic rates of cold-adapted native noble crayfish (Astacus astacus) and invasive signal crayfish (Pacifastacus leniusculus) originally from a warmer environment over a temperature gradient resembling natural temperatures in Finland. The maximum feeding rates and routine metabolic rates (RMR) of native noble crayfish were significantly higher at low temperatures (< 10 °C than the rates of invasive signal crayfish. The RMRs of the species crossed at 18 °C, and the RMRs of signal crayfish were higher at temperatures above 18 °C. These findings indicate that the invader’s thermal niche has remained stable, and the potential impacts per capita are lower at suboptimal cold temperatures than for the native species. Our bioenergetics modelling showed that the direct annual predation impact of noble and signal crayfish seem similar, although the seasonal dynamics of the predation differs considerably between species. Our results highlight that the temperature-specific metabolic and feeding rates of species need to be taken into account in the impact assessment instead of simple generalisations of the direction or magnitude of impacts.
Mono- and biallelic variant effects on disease at biobank scale
Identifying causal factors for Mendelian and common diseases is an ongoing challenge in medical genetics 1 . Population bottleneck events, such as those that occurred in the history of the Finnish population, enrich some homozygous variants to higher frequencies, which facilitates the identification of variants that cause diseases with recessive inheritance 2 , 3 . Here we examine the homozygous and heterozygous effects of 44,370 coding variants on 2,444 disease phenotypes using data from the nationwide electronic health records of 176,899 Finnish individuals. We find associations for homozygous genotypes across a broad spectrum of phenotypes, including known associations with retinal dystrophy and novel associations with adult-onset cataract and female infertility. Of the recessive disease associations that we identify, 13 out of 20 would have been missed by the additive model that is typically used in genome-wide association studies. We use these results to find many known Mendelian variants whose inheritance cannot be adequately described by a conventional definition of dominant or recessive. In particular, we find variants that are known to cause diseases with recessive inheritance with significant heterozygous phenotypic effects. Similarly, we find presumed benign variants with disease effects. Our results show how biobanks, particularly in founder populations, can broaden our understanding of complex dosage effects of Mendelian variants on disease. An analysis of biobank data from the FinnGen project examines dosage effects of genetic variants on disease, andidentifies a benefit when considering more complex inheritance in the genetics of common as well as Mendelian diseases.
Prediction of hip osteoporosis by DXA using a novel pulse-echo ultrasound device
SummaryPulse-echo ultrasonometry can be used as a pre-screen for hip osteoporosis before dual-energy x-ray absorptiometry (DXA), potentially allowing DXA to be avoided for the majority of post-menopausal women. Pulse-echo ultrasound measures of tibia cortical thickness are also associated with radiographically confirmed prior fractures, independent of femoral neck bone mineral density.IntroductionTo estimate how well a pulse-echo ultrasound device discriminates those who have from those who do not have hip osteoporosis (femoral neck bone mineral density [BMD] or total hip BMD T-score ≤ −2.5), and to estimate the association of pulse-echo ultrasound measures with prevalent (radiographically confirmed) clinical fractures.MethodsFive hundred fifty-five post-menopausal women age 50 to 89 had femoral neck and total hip BMD measured by dual-energy x-ray absorptiometry (DXA), and pulse-echo ultrasound measures of distal radius, proximal tibia, distal tibia cortical thickness, and multi- and single-site density indices (DI). Using previously published threshold ultrasound values, we estimated the proportion of women who would avoid a follow-up DXA after pulse-echo ultrasonometry, and the sensitivity and specificity of this for the detection of hip osteoporosis. Logistic regression models were used to estimate the associations of pulse-echo ultrasound measures with radiographically confirmed clinical fractures within the prior 5 years.ResultsUsing multi-site and single-site DI measures, follow-up DXA could be avoided for 73 and 69 % of individuals, respectively, while detecting hip osteoporosis with 80–82 % sensitivity and 81 % specificity. Radiographically confirmed prior fracture was associated with ultrasound measures of single-site DI (odds ratio (OR) 1.55, 95 % confidence interval (CI). 1.06 to 2.26) and proximal tibia cortical thickness (OR 1.47, 95 % CI 1.10 to 1.96), adjusted for age, body mass index, and femoral neck BMD.ConclusionsPulse-echo ultrasonometry can be used as an initial screening test for hip osteoporosis. Prospective studies of how well pulse-echo ultrasound measures predict subsequent clinical fractures are warranted.
Pulse-echo ultrasound method for detection of post-menopausal women with osteoporotic BMD
SummaryWe lack effective diagnostics of osteoporosis at the primary health care level. An ultrasound device was used to identify subjects in the osteoporotic range as defined by DXA. A case finding strategy combining ultrasound results with DXA measurements for patients with intermediate ultrasound results is presented.IntroductionWe lack effective screening and diagnostics of osteoporosis at primary health care. In this study, a pulse-echo ultrasound (US) method is investigated for osteoporosis screening.MethodsA total of 1091 Caucasian women (aged 50–80 years) were recruited for the study and measured with US in the tibia and radius. This method measures cortical thickness and provides an estimate of bone mineral density (BMD) and density index (DI). BMD assessment of the hip was available for 988 women. A total of 888 women had one or more risk factors for osteoporosis (OPsusp), and 100 women were classified healthy. Previously determined thresholds for the DI were evaluated for assessment of efficacy of the technique to detect hip BMD at osteoporotic range (T-score at or below − 2.5).ResultsIn the OPsusp group, the application of thresholds for the DI showed that approximately 32% of the subjects would require an additional DXA measurement. The multi-site ultrasound (US) measurement-based DI showed 93.7% sensitivity and 81.6% specificity, whereas the corresponding values for single-site US measurement-based DI were 84.7 and 82.0%, respectively. The ultrasound measurements showed a high negative predictive value 97.7 to 99.2% in every age decade examined (ages 50–59, 60–69, 70–79 years).ConclusionsThe study data demonstrate that a strategy of combining ultrasound measurement with added DXA measurements in cases with intermediate ultrasound results (about 30%) can be useful for identifying subjects at risk for a low bone mineral density in the osteoporotic range.
New method for point-of-care osteoporosis screening and diagnostics
Summary Due to the lack of diagnostics in primary health care, over 75 % of osteoporotic patients are not diagnosed. A new ultrasound method for primary health care is proposed. Results suggest applicability of ultrasound method for osteoporosis diagnostics at primary health care. Introduction We lack effective screening and diagnostics of osteoporosis at primary health care. In this study, a new ultrasound (US) method is proposed for osteoporosis diagnostics. Methods A total of 572 Caucasian women (age 20 to 91 years) were examined using pulse-echo US measurements in the tibia and radius. This method provides an estimate of bone mineral density (BMD), i.e. density index (DI). Areal BMD measurements at the femoral neck (BMD neck ) and total hip (BMD total ) were determined by using axial dual-energy X-ray absorptiometry (DXA) for women older than 50 years of age ( n  = 445, age = 68.8 ± 8.5 years). The osteoporosis thresholds for the DI were determined according to the International Society for Clinical Densitometry (ISCD). Finally, the FRAX questionnaire was completed by 425 participants. Results Osteoporosis was diagnosed in individuals with a T-score −2.5 or less in the total hip or femoral neck ( n  = 75). By using the ISCD approach for the DI, only 28.7 % of the subjects were found to require an additional DXA measurement. Our results suggest that combination of US measurement and FRAX in osteoporosis management pathways would decrease the number of DXA measurements to 16 % and the same treatment decisions would be reached at 85.4 % sensitivity and 78.5 % specificity levels. Conclusions The present results demonstrate a significant correlation between the ultrasound and DXA measurements at the proximal femur. The thresholds presented here with the application to current osteoporosis management pathways show promise for the technique to significantly decrease the amount of DXA referrals and increase diagnostic coverage; however, these results need to be confirmed in future studies.
Multi-site bone ultrasound measurements in elderly women with and without previous hip fractures
Summary About 75% of patients suffering from osteoporosis are not diagnosed. This study describes a multi-site bone ultrasound method for osteoporosis diagnostics. In comparison with axial dual energy X-ray absorptiometry (DXA), the ultrasound method showed good diagnostic performance and could discriminate fracture subjects among elderly females. Introduction Axial DXA, the gold standard diagnostic method for osteoporosis, predicts fractures only moderately. At present, no reliable diagnostic methods are available at the primary health care level. Here, a multi-site ultrasound method is proposed for osteoporosis diagnostics. Methods Thirty elderly women were examined using the ultrasound backscatter measurements in proximal femur, proximal radius, proximal and distal tibia in vivo. First, we predicted the areal bone mineral density (BMD) at femoral neck by ultrasound measurements in tibia combined with specific subject characteristics (density index, DI) and, second, we tested the ability of ultrasound backscatter measurements at proximal femur to discriminate between individuals with previously fractured hips from those without fractures. Areal BMD was determined by axial DXA. Results Combined ultrasound parameters, cortical thickness at distal and proximal tibia, with age and weight of the subject, provided a significant estimate of BMD neck ( r  = 0.86, p  < 0.001, n  = 30). When inserted into FRAX (World Health Organization fracture risk assessment tool), the DI indicated the same treatment proposal as the BMD neck with 86% sensitivity and 100% specificity. The receiver operating characteristic analyses, with a combination of ultrasound parameters and patient characteristics, discriminated fracture subjects from the controls similarly as the model combining BMD neck and patient characteristics. Conclusions For the first time, ultrasound backscatter measurements of proximal femur were conducted in vivo. The results indicate that ultrasound parameters, combined with patient characteristics, may provide a means for osteoporosis diagnostics.
Environmental and genetic effects on larval hatching time in two coregonids
Hatching time (HT) of autumn-spawning fishes depends strongly on the egg incubation temperature and especially on the warming of water in spring, which synchronizes the hatching with ice-out despite the large inter-annual variability in spring phenology. However, the relative roles of genetic and environmental effects on the HT have rarely been explored. We studied experimentally the parental effects on the HT and size of vendace ( Coregonus albula (L.)) and whitefish ( C. lavaretus L.) larvae under short and long winter conditions using a full-factorial breeding design. Both parents significantly affected the HT of vendace, mostly by additive genetic effects, and the difference between short and long winter treatment was also significant. In whitefish, the female × male interaction was significant, implying non-additive genetic effects. The maximum range of the HT of eggs between parent pairs within certain winter condition was 3 weeks and was clearly lower than the potential range for the temperature-adjusted HT. The size of eggs or hatched larvae did not correlate with the HT in either of the species. The variation in HT between eggs from different parents creates a basis for genetic adaptation to climate change and for local adaption of populations in their thermal environments.
Effects of Exercise Rehabilitation on Cardiac Electrical Instability Assessed by T-Wave Alternans During Ambulatory Electrocardiogram Monitoring in Coronary Artery Disease Patients Without and With Diabetes Mellitus
Effects of exercise rehabilitation on electrocardiographic markers of risk for sudden cardiac death have not been adequately studied. We examined effects of controlled exercise training on T-wave alternans (TWA) in 24-hour ambulatory electrocardiogram recordings in patients with stable coronary artery disease (CAD) without and with type 2 diabetes mellitus (DM). Consecutive patients with angiographically confirmed CAD were recruited to join the ARTEMIS (Innovation to Reduce Cardiovascular Complications of Diabetes at the Intersection) study. Exercise (n = 65) and control groups (n = 65) were matched on age, sex, DM, and previous myocardial infarction. Ambulatory electrocardiograms were recorded before and after a 2-year training period. TWA was assessed using time domain–modified moving average method by an investigator blinded to patients' clinical status. Average TWA values decreased in the rehabilitation group but not in control patients (rehabilitation [mean ± SEM]: 52.8 ± 1.7 μV vs 48.7 ± 1.5 μV, p <0.001; control: 53.7 ± 1.7 μV vs 54.3 ± 1.6 μV, p = 0.746). Changes in TWA differed between the groups (rehabilitation: −4.1 ± 1.2 μV vs controls: +0.6 ± 1.1 μV, p = 0.005). In CAD + DM patients, 50% (n = 9) of the 18 positive TWA cases were converted with exercise versus 10% (n = 2 of 20) of controls (p = 0.020). In CAD patients, 30% (n = 8 of 27) of positive TWA cases were converted with exercise versus 4% (n = 1 of 28) of controls (p = 0.012). In conclusion, this is the first report of the effectiveness of exercise rehabilitation to reduce TWA, a marker of sudden cardiac death risk, in patients with stable CAD. •First study to report reduction in T-wave alternans by exercise rehabilitation.•Heart rate recovery data suggest an autonomic basis for the reduction in TWA.•TWA can be visualized in templates as a separation between beats in the JT segment.
Lone atrial fibrillation in vigorously exercising middle aged men: case-control study
Introduction Regular physical exercise reduces cardiovascular morbidity. 1 2 However, our clinical impression is that atrial fibrillation is quite common in otherwise healthy middle aged men engaged in long term vigorous endurance sports. Comment Vigorous long term exercise is associated with atrial fibrillation in healthy middle aged men despite protecting against coronary heart disease and premature death.
FinnGen provides genetic insights from a well-phenotyped isolated population
Population isolates such as those in Finland benefit genetic research because deleterious alleles are often concentrated on a small number of low-frequency variants (0.1% ≤ minor allele frequency < 5%). These variants survived the founding bottleneck rather than being distributed over a large number of ultrarare variants. Although this effect is well established in Mendelian genetics, its value in common disease genetics is less explored 1 , 2 . FinnGen aims to study the genome and national health register data of 500,000 Finnish individuals. Given the relatively high median age of participants (63 years) and the substantial fraction of hospital-based recruitment, FinnGen is enriched for disease end points. Here we analyse data from 224,737 participants from FinnGen and study 15 diseases that have previously been investigated in large genome-wide association studies (GWASs). We also include meta-analyses of biobank data from Estonia and the United Kingdom. We identified 30 new associations, primarily low-frequency variants, enriched in the Finnish population. A GWAS of 1,932 diseases also identified 2,733 genome-wide significant associations (893 phenome-wide significant (PWS), P  < 2.6 × 10 –11 ) at 2,496 (771 PWS) independent loci with 807 (247 PWS) end points. Among these, fine-mapping implicated 148 (73 PWS) coding variants associated with 83 (42 PWS) end points. Moreover, 91 (47 PWS) had an allele frequency of <5% in non-Finnish European individuals, of which 62 (32 PWS) were enriched by more than twofold in Finland. These findings demonstrate the power of bottlenecked populations to find entry points into the biology of common diseases through low-frequency, high impact variants. Genome-wide association studies of individuals from an isolated population (data from the Finnish biobank study FinnGen) and consequent meta-analyses facilitate the identification of previously unknown coding variant associations for both rare and common diseases.