Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
52
result(s) for
"Kas, Martien J H"
Sort by:
Intranasal Mesenchymal Stem Cell Treatment for Neonatal Brain Damage: Long-Term Cognitive and Sensorimotor Improvement
by
Heijnen, Cobi J.
,
Nijboer, Cora H.
,
van Bel, Frank
in
Animal cognition
,
Animals
,
Animals, Newborn
2013
Mesenchymal stem cell (MSC) administration via the intranasal route could become an effective therapy to treat neonatal hypoxic-ischemic (HI) brain damage. We analyzed long-term effects of intranasal MSC treatment on lesion size, sensorimotor and cognitive behavior, and determined the therapeutic window and dose response relationships. Furthermore, the appearance of MSCs at the lesion site in relation to the therapeutic window was examined. Nine-day-old mice were subjected to unilateral carotid artery occlusion and hypoxia. MSCs were administered intranasally at 3, 10 or 17 days after hypoxia-ischemia (HI). Motor, cognitive and histological outcome was investigated. PKH-26 labeled cells were used to localize MSCs in the brain. We identified 0.5 × 10(6) MSCs as the minimal effective dose with a therapeutic window of at least 10 days but less than 17 days post-HI. A single dose was sufficient for a marked beneficial effect. MSCs reach the lesion site within 24 h when given 3 or 10 days after injury. However, no MSCs were detected in the lesion when administered 17 days following HI. We also show for the first time that intranasal MSC treatment after HI improves cognitive function. Improvement of sensorimotor function and histological outcome was maintained until at least 9 weeks post-HI. The capacity of MSCs to reach the lesion site within 24 h after intranasal administration at 10 days but not at 17 days post-HI indicates a therapeutic window of at least 10 days. Our data strongly indicate that intranasal MSC treatment may become a promising non-invasive therapeutic tool to effectively reduce neonatal encephalopathy.
Journal Article
Influencing cognitive performance via social interactions: a novel therapeutic approach for brain disorders based on neuroanatomical mapping?
by
van der Zee, Eddy A.
,
Lanooij, Suzanne D.
,
Eisel, Ulrich L. M.
in
631/378
,
692/699/476
,
Alzheimer's disease
2023
Many psychiatric and neurological disorders present deficits in both the social and cognitive domain. In this perspectives article, we provide an overview and the potential of the existence of an extensive neurobiological substrate underlying the close relationship between these two domains. By mapping the rodent brain regions involved in the social and/or cognitive domain, we show that the vast majority of brain regions involved in the cognitive domain are also involved in the social domain. The identified neuroanatomical overlap has an evolutionary basis, as complex social behavior requires cognitive skills, and aligns with the reported functional interactions of processes underlying cognitive and social performance. Based on the neuroanatomical mapping, recent (pre-)clinical findings, and the evolutionary perspective, we emphasize that the social domain requires more focus as an important treatment target and/or biomarker, especially considering the presently limited treatment strategies for these disorders.
Journal Article
The aperiodic exponent of neural activity varies with vigilance state in mice and men
by
Penninx, Brenda W. J. H.
,
Arango, Celso
,
Winter-van Rossum, Inge
in
Aged
,
Alzheimer Disease - physiopathology
,
Alzheimer's disease
2024
Recently the 1/f signal of human electroencephalography has attracted attention, as it could potentially reveal a quantitative measure of neural excitation and inhibition in the brain, that may be relevant in a clinical setting. The purpose of this short article is to show that the 1/f signal depends on the vigilance state of the brain in both humans and mice. Therefore, proper labelling of the EEG signal is important as improper labelling may obscure disease-related changes in the 1/f signal. We demonstrate this by comparing EEG results from a longitudinal study in a genetic mouse model for synaptic dysfunction in schizophrenia and autism spectrum disorders to results from a large European cohort study with schizophrenia and mild Alzheimer’s disease patients. The comparison shows when the 1/f is corrected for vigilance state there is a difference between groups, and this effect disappears when vigilance state is not corrected for. In conclusion, more attention should be paid to the vigilance state during analysis of EEG signals regardless of the species.
Journal Article
Comprehensive analysis of genetic risk loci uncovers novel candidate genes and pathways in the comorbidity between depression and Alzheimer’s disease
2024
There is growing evidence of a shared pathogenesis between Alzheimer’s disease and depression. Therefore, we aimed to further investigate their shared disease mechanisms. We made use of publicly available brain-specific eQTL data and gene co-expression networks of previously reported genetic loci associated with these highly comorbid disorders. No direct genetic overlap was observed between Alzheimer’s disease and depression in our dataset, but we did detect six shared brain-specific eQTL genes:
SRA1
,
MICA
,
PCDHA7, PCDHA8, PCDHA10
and
PCDHA13
. Several pathways were identified as shared between Alzheimer’s disease and depression by conducting clustering pathway analysis on hippocampal co-expressed genes; synaptic signaling and organization, myelination, development, and the immune system. This study highlights trans-synaptic signaling and synaptoimmunology in the hippocampus as main shared pathomechanisms of Alzheimer’s disease and depression.
Journal Article
Hyperactivity in Anorexia Nervosa: Warming Up Not Just Burning-Off Calories
by
Carrera, Olaia
,
Adan, Roger A. H.
,
Hoek, Hans W.
in
Accelerometers
,
Adolescent
,
Ambient temperature
2012
Excessive physical activity is a common feature in Anorexia Nervosa (AN) that interferes with the recovery process. Animal models have demonstrated that ambient temperature modulates physical activity in semi-starved animals. The aim of the present study was to assess the effect of ambient temperature on physical activity in AN patients in the acute phase of the illness. Thirty-seven patients with AN wore an accelerometer to measure physical activity within the first week of contacting a specialized eating disorder center. Standardized measures of anxiety, depression and eating disorder psychopathology were assessed. Corresponding daily values for ambient temperature were obtained from local meteorological stations. Ambient temperature was negatively correlated with physical activity (p = -.405) and was the only variable that accounted for a significant portion of the variance in physical activity (p = .034). Consistent with recent research with an analogous animal model of the disorder, our findings suggest that ambient temperature is a critical factor contributing to the expression of excessive physical activity levels in AN. Keeping patients warm may prove to be a beneficial treatment option for this symptom.
Journal Article
A New Intervention for Implementation of Pharmacogenetics in Psychiatry: A Description of the PSY-PGx Clinical Study
2024
(1) Background Pharmacological treatment for psychiatric disorders has shown to only be effective in about one-third of patients, as it is associated with frequent treatment failure, often because of side effects, and a long process of trial-and-error pharmacotherapy until an effective and tolerable treatment is found. This notion emphasizes the urgency for a personalized medicine approach in psychiatry. (2) Methods This prospective patient- and rater-blinded, randomized, controlled study will investigate the effect of dose-adjustment of antidepressants escitalopram and sertraline or antipsychotics risperidone and aripiprazole according to the latest state-of-the-art international dosing recommendations for CYP2C19 and CYP2D6 metabolizer status in patients with mood, anxiety, and psychotic disorders. A total sample of N = 2500 will be recruited at nine sites in seven countries (expected drop-out rate of 30%). Patients will be randomized to a pharmacogenetic group or a dosing-as-usual group and treated over a 24-week period with four study visits. The primary outcome is personal recovery using the Recovery Assessment Scale as assessed by the patient (RAS-DS), with secondary outcomes including clinical effects (response or symptomatic remission), side effects, general well-being, digital phenotyping, and psychosocial functioning. (3) Conclusions This is, to our knowledge, the first international, multi-center, non-industry-sponsored randomized controlled trial (RCT) that may provide insights into the effectiveness and utility of implementing pharmacogenetic-guided treatment of psychiatric disorders, and as such, results will be incorporated in already available dosing guidelines.
Journal Article
The human neuropsychiatric risk gene Drd2 is necessary for social functioning across evolutionary distant species
2024
The
Drd2
gene, encoding the dopamine D
2
receptor (D2R), was recently indicated as a potential target in the etiology of lowered sociability (i.e., social withdrawal), a symptom of several neuropsychiatric disorders such as Schizophrenia and Major Depression. Many animal species show social withdrawal in response to stimuli, including the vinegar fly
Drosophila melanogaster
and mice, which also share most human disease-related genes. Here we will test for causality between
Drd2
and sociability and for its evolutionary conserved function in these two distant species, as well as assess its mechanism as a potential therapeutic target. During behavioral observations in groups of freely interacting
D. melanogaster
,
Drd2
homologue mutant showed decreased social interactions and locomotor activity. After confirming
Drd2
’s social effects in flies, conditional transgenic mice lacking
Drd2
in dopaminergic cells (autoreceptor KO) or in serotonergic cells (heteroreceptor KO) were studied in semi-natural environments, where they could freely interact. Autoreceptor KOs showed increased sociability, but reduced activity, while no overall effect of
Drd2
deletion was observed in heteroreceptor KOs. To determine acute effects of D2R signaling on sociability, we also showed that a direct intervention with the D2R agonist Sumanirole decreased sociability in wild type mice, while the antagonist showed no effects. Using a computational ethological approach, this study demonstrates that
Drd2
regulates sociability across evolutionary distant species, and that activation of the mammalian D2R autoreceptor, in particular, is necessary for social functioning.
Journal Article
Modeling the quantitative nature of neurodevelopmental disorders using Collaborative Cross mice
by
Burbach, J. Peter H.
,
Iraqi, Fuad A.
,
Bruining, Hilgo
in
Animal models
,
Animals
,
Attention deficit hyperactivity disorder
2018
Background
Animal models for neurodevelopmental disorders (NDD) generally rely on a single genetic mutation on a fixed genetic background. Recent human genetic studies however indicate that a clinical diagnosis with Autism Spectrum Disorder (ASD) is almost always associated with multiple genetic fore- and background changes. The translational value of animal model studies would be greatly enhanced if genetic insults could be studied in a more quantitative framework across genetic backgrounds.
Methods
We used the Collaborative Cross (CC), a novel mouse genetic reference population, to investigate the quantitative genetic architecture of mouse behavioral phenotypes commonly used in animal models for NDD.
Results
Classical tests of social recognition and grooming phenotypes appeared insufficient for quantitative studies due to genetic dilution and limited heritability. In contrast, digging, locomotor activity, and stereotyped exploratory patterns were characterized by continuous distribution across our CC sample and also mapped to quantitative trait loci containing genes associated with corresponding phenotypes in human populations.
Conclusions
These findings show that the CC can move animal model studies beyond comparative single gene-single background designs, and point out which type of behavioral phenotypes are most suitable to quantify the effect of developmental etiologies across multiple genetic backgrounds.
Journal Article
Seven unique frequency profiles for scoring vigilance states in preclinical electrophysiological data
2025
Manual scoring of longitudinal electroencephalographical (EEG) data is a slow and time-consuming process. Current advances in the application of machine-learning and artificial intelligence to EEG data are moving fast; however, there is still a need for expert raters to validate scoring of EEG data. We hypothesized that power-frequency profiles are determining the state and ‘set the framework’ for communication between neurons. Based on these assumptions, a scoring method with a set frequency profile for each vigilance state, both in sleep and awake, was developed and validated. We defined seven states of the functional brain with unique profiles in terms of frequency-power spectra, coherence, phase-amplitude coupling, α exponent, functional excitation-inhibition balance (fE/I), and aperiodic exponent. The new method requires a manual check of wake–sleep transitions and is therefore considered semi-automatic. This semi-automatic approach showed similar α exponent and fE/I when compared to traces scored manually. The new method was faster than manual scoring, and the advanced outcomes of each state were stable across datasets and epoch length. When applying the new method to the neurexin-1α ( Nrxn1α ) gene deficient mouse, a model of synaptic dysfunction relevant to autism spectrum disorders, several genotype differences in the 24-h distribution of vigilance states were detected. Most prominent was the decrease in slow-wave sleep when comparing wild-type mice to Nrxn1α -deficient mice. This new methodology puts forward an optimized and validated EEG analysis pipeline for the identification of translational electrophysiological biomarkers for brain disorders that are related to sleep architecture and E/I balance.
Journal Article
Evaluation of variation in preclinical electroencephalographic (EEG) spectral power across multiple laboratories and experiments: An EQIPD study
by
Boulanger, Bruno
,
Miljanovic, Nina
,
Song, Dekun
in
Animal experimentation
,
Animals
,
Biology and Life Sciences
2024
The European Quality In Preclinical Data (EQIPD) consortium was born from the fact that publications report challenges with the robustness, rigor, and/or validity of research data, which may impact decisions about whether to proceed with further preclinical testing or to advance to clinical testing, as well as draw conclusions on the predictability of preclinical models. To address this, a consortium including multiple research laboratories from academia and industry participated in a series of electroencephalography (EEG) experiments in mice aimed to detect sources of variance and to gauge how protocol harmonisation and data analytics impact such variance. Ultimately, the goal of this first ever between-laboratory comparison of EEG recordings and analyses was to validate the principles that supposedly increase data quality, robustness, and comparability. Experiments consisted of a Localisation phase, which aimed to identify the factors that influence between-laboratory variability, a Harmonisation phase to evaluate whether harmonisation of standardized protocols and centralised processing and data analysis reduced variance, and a Ring-Testing phase to verify the ability of the harmonised protocol to generate consistent findings. Indeed, between-laboratory variability reduced from Localisation to Harmonisation and this reduction remained during the Ring-Testing phase. Results obtained in this multicentre preclinical qEEG study also confirmed the complex nature of EEG experiments starting from the surgery and data collection through data pre-processing to data analysis that ultimately influenced the results and contributed to variance in findings across laboratories. Overall, harmonisation of protocols and centralized data analysis were crucial in reducing laboratory-to-laboratory variability. To this end, it is recommended that standardized guidelines be updated and followed for collection and analysis of preclinical EEG data.
Journal Article